《《洛倫茲力的應(yīng)用》PPT課件》由會員分享,可在線閱讀,更多相關(guān)《《洛倫茲力的應(yīng)用》PPT課件(59頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、帶電粒子在磁場中運(yùn)動情況研究,1、找圓心:方法 2、找半徑: 3、確定運(yùn)動時間:,,注意:用弧度表示,,,歡迎大家進(jìn)入物理的世界,3.5 洛倫茲力的應(yīng)用,3-5 洛倫茲力的應(yīng)用,一.利用磁場控制帶電粒子的運(yùn)動,例1.電視機(jī)的顯像管中,電子束的偏轉(zhuǎn)是用磁偏轉(zhuǎn)技術(shù)實現(xiàn)的。電子束經(jīng)過加速電場后,以速度v進(jìn)入一圓形勻強(qiáng)磁場區(qū),如圖所示。磁場方向垂直于圓面。磁場區(qū)的中心為O,半徑為r。當(dāng)不加磁場時,電子束將通過O點而打到屏幕的中心M點。為了讓電子束射到屏幕邊緣P.需要加磁場,使電子束偏轉(zhuǎn)一已知角度,此時磁場的磁感應(yīng)強(qiáng)度B應(yīng)為多少?,分析:,,,對于一定的帶電粒子(m、q一定),可 以通過調(diào)節(jié)B和V的大小
2、來控制粒子的偏 轉(zhuǎn)角度,顯像管是它的核心部件。這是一個真空電子管,它前端是熒光屏,后端有電子槍。熒光屏上有數(shù)百萬個熒光塊,每一塊中含有紅、綠、藍(lán)三種顏色的熒光粉。當(dāng)電子槍發(fā)射的高速電子束擊中一個熒光塊時,其中的熒光粉就受激發(fā)光。紅、綠、藍(lán)是色光中的三基色,把它們按一定比例混合,就能獲得各種色光。彩色電視機(jī)利用這一原理,讓各個熒光塊按圖像信號的要求分別顯示出不同顏色、不同強(qiáng)度的光,我們就看到了豐富多彩的顏色。,電視機(jī)原理,例:一個質(zhì)量為m、電荷量為q的粒子,從容器下方的小孔S1飄入電勢差為的加速電場,然后經(jīng)過S3沿著與磁場垂直的方向進(jìn)入磁感應(yīng)強(qiáng)度為的勻強(qiáng)磁場中,最后打到照相底片上,求: ()求粒
3、子進(jìn)入磁場時的速率 ()求粒子在磁場中運(yùn)動的軌道半徑,二、質(zhì)譜儀,偏,轉(zhuǎn),:,質(zhì)譜儀最初是由湯姆生的學(xué)生阿斯頓設(shè)計的,他用質(zhì)譜儀發(fā)現(xiàn)了氖20和氖22,證實了同位素的存在?,F(xiàn)在質(zhì)譜儀已經(jīng)是一種十分精密的儀器,是測量帶電粒子的質(zhì)量和分析同位素的重要工具。,加速:qU=mv2/2,,又R=mv/qB,,可見,此儀器可以用來測定帶電粒子的荷質(zhì)比,也可以在已知電量的情況下測定粒子質(zhì)量,這樣的儀器叫質(zhì)譜儀。,1加速原理:利用加速電場對帶電粒子做正功使帶電粒子的動能增加,qU=Ek,2直線加速器,多級加速 如圖所示是多級加速裝置的原理圖:,三、加速器,(一)、直線加速器,由動能定理得帶電粒子經(jīng)n極的電場加速
4、后增加的動能為:,3直線加速器占有的空間范圍大,在有限的空間范圍內(nèi)制造直線加速器受到一定的限制,1966年建成的美國斯坦福電子直線加速器管長3050米,電子能量高達(dá)22吉電子伏,脈沖電子流強(qiáng)約80毫安,平均流強(qiáng)為48微安。,加利佛尼亞斯坦福大學(xué)的粒子加速器,加速類型及原理演示,直線加速 PLAY,回旋加速 PLAY,,,,,,U,,,,,,,U,,,,,,U,,,,,,U,,,,,,,,,,,,U,U,1932年,美國物理學(xué)家勞侖斯發(fā)明了回旋加速器,從而使人類在獲得具有較高能量的粒子方面邁進(jìn)了一大步為此,勞侖斯榮獲了諾貝爾物理學(xué)獎,(二).回旋加速器,回旋加速器:獲得高能粒子,(2)原理:粒子
5、在勻強(qiáng)磁場中每轉(zhuǎn)半周即能在電場中加速一次,從而使粒子獲得高速。,(1)結(jié)構(gòu):兩型金屬扁盒,中間留一窄縫,中間放粒子源,置于巨大電磁鐵兩極間,兩盒接高頻電源。,1932年美國物理學(xué)家勞倫斯發(fā)明,獲1939年諾貝爾物理學(xué)獎。,(3)電場加速 每一次加速動能增量相同: U q = Ek,(4)磁場約束偏轉(zhuǎn),R v,(5)加速條件:高頻電源的周期與帶電粒子的周期相同, T電場 = T回旋 =,v增大,r增大,但T始終不變。,(6)若加速器半徑為R,則粒子加速后的最大能量:,E k =q2B2R2/2m,四、磁流體發(fā)電機(jī),原理是:等離子氣體噴入磁場,正、負(fù)離子在洛侖茲力作用下發(fā)生偏轉(zhuǎn)而聚集到A、B
6、板上,產(chǎn)生電勢差.,設(shè)A、B平行金屬板的面積為S,相距L,等離子體的電阻率為,噴入氣體速度為v,板間磁場的磁感強(qiáng)度為B,板外電阻為R,當(dāng)?shù)入x子氣體勻速通過A、B板間時,A、B板上聚焦的電荷最多,板間電勢差最大,即為電源電動勢,此時通過R的電流是多大?,E 場q=BqV,E場=BV,電動勢E= E場L=BLV,五、 霍耳(E.C.Hall)效應(yīng),在一個通有電流的導(dǎo)體板上,垂直于板面施加一磁場,則平行磁場的兩面出現(xiàn)一個電勢差,這一現(xiàn)象是1879年美國物理學(xué)家霍耳發(fā)現(xiàn)的,稱為霍耳效應(yīng)。該電勢差稱為霍耳電勢差 。,霍耳,例2如圖,在一水平放置的平板MN上方有勻強(qiáng)磁場,磁感應(yīng)強(qiáng)度的大小為B,磁場方向垂直
7、于紙面向里,許多質(zhì)量為m,帶電量為+q的粒子,以相同的速率v沿位于紙面內(nèi)的各個方向,由小孔O射入磁場區(qū)域,不計重力,不計粒子間的相互影響.下列圖中陰影部分表示帶 電粒子可能經(jīng)過的區(qū)域,其中R=mv/qB. 哪個圖是正確的?,解: 帶電量為+q的粒子,以相同的速率v沿位于紙面內(nèi)的各個方向,由小孔O射入磁場區(qū)域,由R=mv/qB,各個粒子在磁場中運(yùn)動的半徑均相同, 在磁場中運(yùn)動的軌跡圓圓心是在以O(shè)為圓心、以R=mv/qB為半徑的1/2圓弧上,如圖虛線示:各粒子的運(yùn)動軌跡如圖實線示:帶電粒子可能經(jīng)過的區(qū)域陰影部分如圖斜線示,,2R,,,,,R,,,,,,2R,,,,,,M,N,O,,,二帶電粒子在平
8、行直線邊界磁場中的運(yùn)動,速度較小時,作半圓運(yùn)動后從原邊界飛出;速度增加為某臨界值時,粒子作部分圓周運(yùn)動其軌跡與另一邊界相切;速度較大時粒子作部分圓周運(yùn)動后從另一邊界飛出,,,,,B,P,S,,,,,,,Q,P,Q,,,,Q,速度較小時,作圓周運(yùn)動通過射入點;速度增加為某臨界值時,粒子作圓周運(yùn)動其軌跡與另一邊界相切;速度較大時粒子作部分圓周運(yùn)動后從另一邊界飛出,圓心在過入射點跟跟速度方向垂直的直線上,圓心在過入射點跟邊界垂直的直線上,圓心在磁場原邊界上,量變積累到一定程度發(fā)生質(zhì)變,出現(xiàn)臨界狀態(tài),P,速度較小時,作圓弧運(yùn)動后從原邊界飛出;速度增加為某臨界值時,粒子作部分圓周運(yùn)動其軌跡與另一邊界相切
9、;速度較大時粒子作部分圓周運(yùn)動后從另一邊界飛出,例3在真空中寬的區(qū)域內(nèi)有勻強(qiáng)磁場,質(zhì)量為,電量為e,速率為的電子從邊界外側(cè)垂直射入磁場,入射方向與夾角,為了使電子能從磁場的另一側(cè)邊界射出,應(yīng)滿足的條件是:,.veBd/m(1+sin) .veBd/m(1+cos) .v eBd/msin .v eBd/mcos,,,,C,E,F,D,,B,,,,,,B,思考:能從EF射出,求電子在磁場中運(yùn)動的最長時間是多長?,三帶電粒子在矩形邊界磁場中的運(yùn)動,o,B,,,,,,,,圓心在磁場原邊界上,圓心在過入射點跟速度方向垂直的直線上,速度較小時粒子作半圓運(yùn)動后從原邊界飛出;速度在某一范圍內(nèi)時從側(cè)面邊界飛
10、出;速度較大時粒子作部分圓周運(yùn)動從對面邊界飛出。,速度較小時粒子做部分圓周運(yùn)動后從原邊界飛出;速度在某一范圍內(nèi)從上側(cè)面邊界飛;速度較大時粒子做部分圓周運(yùn)動從右側(cè)面邊界飛出;速度更大時粒子做部分圓周運(yùn)動從下側(cè)面邊界飛出。,量變積累到一定程度發(fā)生質(zhì)變,出現(xiàn)臨界狀態(tài)(軌跡與邊界相切),,,例5.一帶電質(zhì)點,質(zhì)量為m,電量為q,重力忽略不計,以速度v與y軸成30角從y軸上的a點射入圖中第一象限所示的區(qū)域。為了使該質(zhì)點能從x軸上的b點與ox夾60角方向射出,可在適當(dāng)?shù)牡胤郊右淮怪庇趚y平面、磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場。若此磁場僅分布在一個圓形區(qū)域內(nèi),求這圓形磁場區(qū)域的最小半徑.,,,,,,,,,例6、如圖
11、,一勻強(qiáng)磁場磁感應(yīng)強(qiáng)度為B,方向向里,其邊界是半徑為R的圓。AB為圓的一直徑。在A點有一粒子源向圓平面內(nèi)的各個方向發(fā)射質(zhì)量m、電量q的粒子,粒子重力不計。(結(jié)果保留2位有效數(shù)字) (1)如果磁場的邊界是彈性邊界,粒子沿半徑方向射入磁場,粒子的速度大小滿足什么條件,可使粒子在磁場中繞行一周回到出發(fā)點,并求離子運(yùn)動的時間。 (2)如果R=3cm、B=0.2T,在A點的粒子源向圓平面內(nèi)的各個方向發(fā)射速度均為106m/s,比荷為108c/kg的粒子.試畫出在磁場中運(yùn)動時間最長的粒子的運(yùn)動軌跡并求此粒子的運(yùn)動的時間。 (3)在(2)中,如果粒子的初速度大 小均為3105米/秒,求磁場中有粒子到
12、 達(dá)的面積.,解(1)速度v與軌跡半徑r垂直,所以 出射速度與R同一直線。 設(shè)粒子經(jīng)過了n個圓弧軌跡回到了A點,所以在右 圖中=/n r=Rtan n=3、4,,,,,,,,,(2)軌跡的半徑r=mv/qB=5cm 要粒子的運(yùn)動時間最長,軌跡如圖 =740時間t=74T/360=6.410-8s,,,,,,,(3)粒子的軌跡半徑 r= mv/qB=1.5cm 有粒子到達(dá)的區(qū)域為如 圖陰影部分,,,,,,,R,,,,,,r,,,A,B,o,,,,,一朵梅花,五帶電粒子在磁場中運(yùn)動軌跡賞析,,,,,一把球拍,,,,,,,,,,a,a,O,x,y,v,v,P,甲,乙,,
13、,,,,,,t,B,-B0,B0,0,T,2T,,,,,,一條波浪,,,,,,a,a,O,x,P,,,v,,,,,,,,a,a,O,x,P,,,v,,,,,,,,,o,A,B,P,Q,一顆明星,a,a,B,一幅窗簾,,,,,,,,,,,,,,,,,,,,,,,,一勻強(qiáng)磁場,磁場方向垂直于xy平面,在xy平面上,磁場分布在以O(shè)為中心的一個圓形區(qū)域內(nèi)。一個質(zhì)量為m、電荷量為q的帶電粒子,由原點O開始運(yùn)動,初速度為v,方向沿x正方向。后來,粒子經(jīng)過y上的P點,此時速度方向與y軸的夾角為30,P到O的距離為L,如圖所示。不計 重力影響。求磁場的磁感應(yīng) 強(qiáng)度B的大小和 xy平面上磁 場區(qū)域的半徑R。,由
14、幾何關(guān)系知 r=L/3 解得,,,,,,x,y,O,P,,v,,,,又由幾何關(guān)系知磁場區(qū)域的半徑為,,例1如圖所示,套在很長的絕緣直棒上的小球,其質(zhì)量為m,帶電量為q,小球可在棒上滑動,將此棒豎直放在互相垂直,且沿水平方向的勻強(qiáng)電場和勻強(qiáng)磁場中,電場強(qiáng)度為E,磁感應(yīng)強(qiáng)度為B,小球與棒的動摩擦因數(shù)為,求小球由靜止沿棒下落的最大加速度和最大速度?(設(shè)小球電量不變),E,由牛頓第二定律得,豎直方向:mg-f=ma,水平方向:N=EqBqV,f=N,總結(jié):,帶電物體在復(fù)合場中做變速直線運(yùn)動時,帶電物體所受的洛侖茲力的大小不斷變化,而洛侖茲力的變化往往引起其他力的變化,從而導(dǎo)致加速度不斷變化。,(2)只
15、將電場(或磁場)反向,而強(qiáng)弱不變,小球的最大加速度和最終速度又將怎樣?,例2如圖所示,質(zhì)量為0.04g的帶有正電荷q為10-4C的小球用長度為0.2m的絲線懸掛在勻強(qiáng)磁場中,磁感應(yīng)強(qiáng)度B為0.5T,方向指向紙內(nèi),小球在磁場內(nèi)做擺動,當(dāng)它到達(dá)最高點A時,絲線偏離豎直方向30角,試問:,(1)小球在A點時受到哪幾個力的作用?,解析:小球在A點時受到兩個力作用,即重力mg和絲線拉力T。,(2)小球向右經(jīng)過最低點C時,絲線受力的大小和方向如何?,解:小球從A點運(yùn)動到C點時,受到的力有重力mg、絲線拉力T、洛侖茲力f,其合力為向心力,即,代入數(shù)據(jù)得:T=4.710-4(N),(3)小球向左經(jīng)過最低點C時
16、,絲線受力的大小和方向如何?,解:小球從D點運(yùn)動到C點時速度與從A點運(yùn)動到C點時大小相同,此時,小球受到的力有重力mg、繩子拉力T,洛侖茲力f,其合力為向心力,則,代入數(shù)據(jù)得T=5.410-4(N),練習(xí)1:一 如圖所示虛線所圍的區(qū)域內(nèi),存在電場強(qiáng)度為E的勻強(qiáng)電場和磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場,已知從左方水平射入的電子,穿過這區(qū)域時未發(fā)生偏轉(zhuǎn),設(shè)重力忽略不計,則在這個區(qū)域中的E和B的方向可能是( ),A、E和B都沿水平方向,并與電子運(yùn)動方向相同,B、E和B都沿水平方向,并與電子運(yùn)動方向相反,,,e,E,B,C、E豎直向上B垂直紙面向外,D、E豎直向上B垂直紙面向里,ABC,練習(xí)2:設(shè)空間存在著豎
17、直向下的勻強(qiáng)電場和垂直紙面向里的勻強(qiáng)磁場,如圖所示,已知一離子在電場力和洛侖茲力的作用下,從靜止開始自a點沿曲線acb運(yùn)動,到達(dá)b時速度恰為零,c點是運(yùn)動軌跡的最低點,不計重力,以下說法錯誤的是( ),練習(xí)2:設(shè)空間存在著豎直向下的勻強(qiáng)電場和垂直紙面向里的勻強(qiáng)磁場,如圖所示,已知一離子在電場力和洛侖茲力的作用下,從靜止開始自a點沿曲線acb運(yùn)動,到達(dá)b時速度恰為零,c點是運(yùn)動軌跡的最低點,不計重力,以下說法錯誤的是( ),D,練習(xí)3:場強(qiáng)為E的勻強(qiáng)電場和磁感強(qiáng)度為B的勻強(qiáng)磁場正交,如圖所示,一質(zhì)量為m的帶電粒子,在垂直于磁場方向的平面內(nèi)做半徑為R的勻速圓周運(yùn)動,設(shè)重力加速度為g,則下列說法
18、正確的是( ),粒子做勻速圓周運(yùn)動,受力分析如圖所示:所以粒子必需帶負(fù)電。,除重力做功之外,還有電場力做功,因此粒子的機(jī)械能不守恒。,練習(xí)3:場強(qiáng)為E的勻強(qiáng)電場和磁感強(qiáng)度為B的勻強(qiáng)磁場正交,如圖所示,一質(zhì)量為m的帶電粒子,在垂直于磁場方向的平面內(nèi)做半徑為R的勻速圓周運(yùn)動,設(shè)重力加速度為g,則下列說法正確的是( ),ABC,練習(xí)4:有一束正粒子,先后通過區(qū)域和,區(qū)域中有相互垂直的勻強(qiáng)電場和勻強(qiáng)磁場,如圖所示,如果這束正離子(不計重力)通過區(qū)域時,不發(fā)生偏轉(zhuǎn),則說明它們的是相同的,若進(jìn)入?yún)^(qū)域后,這束正離子的軌跡也是相同,則說明它們的相同。,速度,荷質(zhì)比,練習(xí)5:如圖所示,在x軸上方有勻強(qiáng)磁場
19、,磁感強(qiáng)度為B,下方有場強(qiáng)為E的勻強(qiáng)電場,有一質(zhì)量為m,帶電量q為的粒子,從坐標(biāo)0沿著y軸正方向射出。射出之后,第3次到達(dá)x軸時,它與點0的距離為L。求此粒子射出時的速度和運(yùn)動的總路程S(重力不計),解析:粒子在磁場中的運(yùn)動為勻速圓周運(yùn)動,在電場中的運(yùn)動為勻變速直線運(yùn)動。畫出粒子運(yùn)動的過程如圖所示:,由圖可知粒子在磁場中運(yùn)動半個周期后第一次通過x軸進(jìn)入電場,做勻減速,運(yùn)動至速度為零,再反向做勻加速直線運(yùn)動,以原來的速度大小反方向進(jìn)入磁場。這就是第二次進(jìn)入磁場,接著粒子在磁場中做圓周運(yùn)動,半個周期后第三次通過x軸。,在磁場中:f洛=f向,粒子在電場中每一次的最大位移設(shè)為y,,第3次到達(dá)軸時,粒子
20、運(yùn)動的總路程為一個周期和兩個位移的長度之和:,思考方法,1、找圓心 2、定半徑 3、確定運(yùn)動時間,,注意:用弧度表示,5.帶電粒子在磁場中運(yùn)動的多解問題,a.帶電粒子的電性不確定形成多解 受洛侖茲力作用的帶電粒子,可能帶正電荷,也可能帶負(fù)電荷,在相同的初速度下,正、負(fù)粒子在磁場中的軌跡不同,導(dǎo)致形成雙解。,b.臨界狀態(tài)不唯一形成多解 帶電粒子在洛侖茲力作用下飛越有界磁場時,由于粒子的運(yùn)動軌跡是圓弧狀,因此它可能穿過去了,也可能轉(zhuǎn)過180從有界磁場的這邊反向飛出,形成多解,c.運(yùn)動的重復(fù)性形成多解 帶電粒子在磁場中運(yùn)動時,由于某些因素的變化,例如磁場的方向反向或者速度方向突然反向,往往運(yùn)動具有反復(fù)性,因而形成多解。,偏向角可由 求出。,經(jīng)歷 時間由 得出。,,,