《安徽省2013年高考數(shù)學第二輪復習 第1講 選擇題技法指導 文》由會員分享,可在線閱讀,更多相關《安徽省2013年高考數(shù)學第二輪復習 第1講 選擇題技法指導 文(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第1講 選擇題技法指導
縱觀近幾年的高考題,無論是全國卷還是省市自主命題卷,選擇題是高考試題的三大題型之一.除上海卷外,其他高考卷中選擇題的個數(shù)均在8~12之間,約占總分的27%~40%.該題型的基本特點是:絕大部分選擇題屬于低中檔題,且一般按由易到難的順序排列,主要的數(shù)學思想和數(shù)學方法能通過它得到充分地體現(xiàn)和應用,選擇題具有概括性強、知識覆蓋面廣、小巧靈活及有一定的綜合性和深度等特點,且每一題幾乎都有兩種或兩種以上的解法.正是因為選擇題具有上述特點,所以該題型能有效地檢測學生的思維層次及考查學生的觀察、分析、判斷、推理、基本運算、信息遷移等能力.選擇題也在嘗試創(chuàng)新,在“形成適當梯度”“
2、用學過的知識解決沒有見過的問題”“活用方法和應變能力”“知識的交會”等四個維度上不斷出現(xiàn)新穎題,這些新穎題成為高考試卷中一道亮麗的風景線.
1.直接法與定義法
直接從題設條件出發(fā),利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果,即“小題大做”,選擇正確答案,這種解法叫直接法.直接法是選擇題最基本的方法,絕大多數(shù)選擇題都適宜用直接法解決.它的一般步驟是:計算推理、分析比較、對照選擇.直接法又分定性分析法、定量分析法和定性、定量綜合分析法.
【例1】若△ABC的內角A,B,C所對的邊a,b,c滿足(a+b)2-c2=4,且C=60°,則ab的值為( ).
3、A. B.8-4 C.1 D.
變式訓練1 已知=1-ni,其中m,n是實數(shù),i是虛數(shù)單位,則m+ni=( ).
A.1+2i B.1-2i C.2+i D.2-i
2.數(shù)形結合法
根據(jù)題設條件作出所研究問題的曲線或有關圖形或草圖,借助幾何圖形的直觀性、形狀、位置、性質等圖象特征作出正確的判斷,得出結論.這種方法通過“以形助數(shù)”或“以數(shù)助形”,使抽象問題直觀化、復雜問題簡單化.
【例2】設函數(shù)y=f(x)在(-∞,+∞)內有定義,對于給定的正數(shù)K,定義函數(shù)fK(x)=取函數(shù)f(x)=2-|x|.當K=時,函數(shù)fK(x)的單調遞增區(qū)間為(
4、 ).
A.(-∞,0) B.(0,+∞)
C.(-∞,-1) D.(1,+∞)
變式訓練2 若函數(shù)f(x)=ex+ln x,g(x)=e-x+ln x,h(x)=e-x-ln x的零點依次為a,b,c,則a,b,c的大小依次為( ).
A.a(chǎn)>b>c B.a(chǎn)>c>b
C.c>a>b D.c>b>a
3.特例法與排除法
用符合條件的特例,來檢驗各選擇項,排除錯誤的,留下正確的一種方法叫特例法(特值法),常用的特例有特殊數(shù)值、特殊函數(shù)、特殊數(shù)列、特殊圖形等.排除法就是根據(jù)高考數(shù)學選擇題中有且只有一個答案是正確的這一特點,
5、在解題時,結合估算、特例、邏輯分析等手段先排除一些肯定是錯誤的選項,從而縮小選擇范圍確保答案的準確性,并提高答題速度.
【例3】函數(shù)f(x)=(0≤x≤2π)的值域是( ).
A. B.[-1,0]
C.[-,-1] D.
4.估算法
由于選擇題提供了唯一正確的選擇項,解答又無需過程.因此,有些題目,不必進行準確的計算,只需對其數(shù)值特點和取值界限作出適當?shù)墓烙?,便能作出正確的判斷,這就是估算法.估算法的關鍵是確定結果所在的大致范圍,否則“估算”就沒有意義,估算法往往可以減少運算量,但是加強了思維的層次.
【例4】若D為不等式組表示的平面區(qū)域,則當a從-2連續(xù)
6、變化到1時,動直線x+y=a掃過D中的那部分區(qū)域的面積為( ).
A. B.1 C. D.2
參考答案
方法例析
【例1】 A 解析:由(a+b)2-c2=4,得a2+b2+2ab-c2=4,
由C=60°,得cos C===.
解得ab=.
【變式訓練1】 C 解析:本題可用驗證法逐一驗證,但以直接法最為簡單.
由=1-ni,得m=(1+i)(1-ni)=(1+n)+(1-n)i,根據(jù)復數(shù)相等的條件得∴
∴m+ni=2+i,故選C.
【例2】 C 解析:當K=時,
fK(x)==
即=
的圖象如下圖.
由圖象可知,所求單調遞增區(qū)間為(
7、-∞,-1).
【變式訓練2】 D 解析:在同一坐標系中作出函數(shù)y=ex,y=e-x,y=-ln x,y=ln x的圖象,則函數(shù)f(x),g(x),h(x)的零點a,b,c分別為函數(shù)y=ex與y=-ln x,y=e-x與y=-ln x,y=e-x與y=ln x圖象交點的橫坐標.觀察圖象可知c>b>a,故選D.
【例3】 B 解析:令sin x=0,cos x=1,
則f(x)==-1,排除A,D;
令sin x=1,cos x=0,則f(x)==0,排除C,故選B.
【例4】 C 解析:如圖知所求區(qū)域的面積是△OAB的面積減去Rt△CDB的面積,所求面積比1大,比S△OAB=×2×2=2小,故選C.