《江西省萍鄉(xiāng)市高中數(shù)學(xué) 第一章 立體幾何初步 1.5.1.2 平面與平面平行的判定課件 北師大版必修2.ppt》由會員分享,可在線閱讀,更多相關(guān)《江西省萍鄉(xiāng)市高中數(shù)學(xué) 第一章 立體幾何初步 1.5.1.2 平面與平面平行的判定課件 北師大版必修2.ppt(23頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第2課時 平面與平面平行的判定,1.掌握面面平行的判定定理. 2.能利用面面平行的判定定理證明面面的平行關(guān)系.,平面與平面平行的判定定理 平面與平面平行的判定定理告訴我們,可以通過直線與平面平行來證明平面與平面平行.通常我們將其記為“若線面平行,則面面平行”.,,,名師點(diǎn)撥對兩個平面平行的判定定理的三點(diǎn)說明: (1)兩個平面平行是指兩個不重合的平面無公共點(diǎn). (2)判斷平面與平面平行問題可以轉(zhuǎn)化為判斷直線與平面平行問題,即要證明兩平面平行,只要在其中一個平面內(nèi)找到兩條相交直線都與另一個平面平行,就可斷定已知的兩個平面平行. (3)利用判定定理證明兩個平面平行時必須具備的兩個條件:①有兩條直
2、線平行于另一個平面;②這兩條直線必須為相交直線.,【做一做1】 已知直線l,m,平面α,β,且l?α,m?α,l∥β,m∥β,則α與β的位置關(guān)系是( ) A.平行 B.相交 C.平行或相交 D.重合 答案:C 【做一做2】 在正方體ABCD-ABCD中,與平面ABCD平行的平面是( ) A.平面ABCD B.平面AADD C.平面ABBA D.平面BCCB 答案:A,題型一,題型二,題型三,【例1】 判斷下列給出的各種說法是否正確? (1)如果直線a和平面α不相交,那么a∥α; (2)如果直線a∥平面α,直線b∥a,那么b∥α; (3)如果直線a∥平面α,那么經(jīng)過直線a的平面β∥α; (4)如
3、果平面α內(nèi)的兩條相交直線a和b與平面β內(nèi)的兩條相交直線a和b分別平行,那么α∥β. 分析:按照線面平行、面面平行的定義及判定定理對每個命題進(jìn)行分析判斷即可.,題型一,題型二,題型三,解:(1)不正確.當(dāng)直線a和平面α不相交時,可能有a?α,a∥α兩種情況,當(dāng)a?α?xí)r,a與α不平行; (2)不正確.當(dāng)直線b∥a時,如果b?α,則有b∥α,如果b?α,則沒有b∥α; (3)不正確.當(dāng)a∥α?xí)r,經(jīng)過直線a的平面β可能與α平行,也可能與α相交; (4)正確.由線面平行的判定定理,知a∥β,b∥β,且a,b?α,a與b相交,所以必有α∥β. 反思1.運(yùn)用線面平行、面面平行的判定定理判定結(jié)論是否正確時,一
4、定要緊扣兩個定理的條件,忽視條件,很容易導(dǎo)致判斷錯誤. 2.在判斷一些命題的真假時,一方面要善于列舉反例來否定一個命題,另一方面要充分考慮線線關(guān)系、線面關(guān)系、面面關(guān)系中的各種情形,以對一個命題的真假作出合理的判斷.,題型一,題型二,題型三,【變式訓(xùn)練1】 設(shè)α,β為兩個不重合平面,在下列條件中,可判斷平面α與β平行的是 . ①α,β都平行于γ. ②α內(nèi)存在不共線的三點(diǎn)到β的距離相等. ③l,m是α內(nèi)的兩條直線,且l∥β,m∥β. ④l,m是兩條異面直線,且l∥α,m∥α,l∥β,m∥β. 解析:①正確.②中如果平面α內(nèi)三個點(diǎn)在平面β的兩側(cè),滿足不共線的三點(diǎn)到平面β的距離相等,此時這兩個平面
5、相交,故②錯誤.③中若l與m平行,則α與β可能相交,故③錯誤.④正確. 答案:①④,題型一,題型二,題型三,【例2】 如圖所示,在正方體ABCD-A1B1C1D1中,M,N,P分別是CC1,B1C1,C1D1的中點(diǎn). 求證:平面PMN∥平面A1BD. 分析:可把面面平行轉(zhuǎn)化為線面平行或線線平行來解決.,題型一,題型二,題型三,證明:如圖所示,連接B1D1,B1C. ∵P,N分別是D1C1,B1C1的中點(diǎn), ∴PN∥B1D1. 又B1D1∥BD,∴PN∥BD. 又PN?平面A1BD,BD?平面A1BD, ∴PN∥平面A1BD. 同理可得MN∥平面A1BD. 又MN∩PN=N, ∴平面PMN∥平
6、面A1BD. 反思證明平面與平面平行的方法: (1)利用定義,證明面面無公共點(diǎn). (2)利用面面平行的判定定理轉(zhuǎn)化為證明線面平行,即證明一個平面內(nèi)的兩條相交直線都平行于另一個平面.,題型一,題型二,題型三,【變式訓(xùn)練2】 如圖所示,若本例中去掉側(cè)棱上的三個中點(diǎn),如何證明平面AB1D1∥平面C1BD? ∴四邊形BDD1B1為平行四邊形, ∴BD∥B1D1. 又B1D1?平面C1BD,BD?平面C1BD, ∴B1D1∥平面C1BD. 同理可得AD1∥平面C1BD. 又B1D1∩AD1=D1, ∴平面AB1D1∥平面C1BD.,題型一,題型二,題型三,【例3】 如圖所示,在正方體ABCD-A1B1C
7、1D1中,O為底面ABCD的中心,P是DD1的中點(diǎn),設(shè)Q是CC1上的點(diǎn),試說明當(dāng)點(diǎn)Q在什么位置時,平面D1BQ∥平面PAO. 分析:由P是DD1的中點(diǎn),猜想Q應(yīng)是CC1的中點(diǎn).,題型一,題型二,題型三,解:當(dāng)Q為CC1的中點(diǎn)時,平面D1BQ∥平面PAO. 證明如下: 設(shè)Q為CC1的中點(diǎn), 可知四邊形ABQP是平行四邊形, ∴AP∥BQ. ∵AP?平面D1BQ,BQ?平面D1BQ, ∴AP∥平面D1BQ. ∵O,P分別為BD,DD1的中點(diǎn),∴OP∥BD1. 又OP?平面D1BQ,BD1?平面D1BQ, ∴OP∥平面D1BQ. 又AP∩PO=P,∴平面D1BQ∥平面PAO, ∴當(dāng)Q為CC1的中點(diǎn)
8、時,平面D1BQ∥平面PAO.,題型一,題型二,題型三,反思對于條件缺失的探索性問題,解答過程中要明確目的,結(jié)合題目本身的特點(diǎn)與相應(yīng)的定理大膽地猜想,然后加以證明.特別要注意中點(diǎn)、頂點(diǎn)等特殊點(diǎn).,題型一,題型二,題型三,【變式訓(xùn)練3】 如圖所示,在四棱錐P-ABCD中,AB∥CD,且AB=2CD,E為PB的中點(diǎn). (1)求證:CE∥平面PAD. (2)在線段AB上是否存在一點(diǎn)F,使得平面PAD∥平面CEF?若存在,證明你的結(jié)論;若不存在,說明理由.,題型一,題型二,題型三,圖①,題型一,題型二,題型三,1 2 3 4,,,,,1.若直線l∥平面α,直線m∥平面α,直線l與m相交于點(diǎn)P,
9、且l與m確定的平面為β,則α與β的位置關(guān)系是( ) A.相交 B.平行 C.重合 D.平行或相交 答案:B,1 2 3 4,,,,,2.下列命題中正確的是( ) ①若一個平面內(nèi)有兩條直線都與另一個平面平行,則這兩個平面平行; ②若一個平面內(nèi)有無數(shù)條直線都與另一個平面平行,則這兩個平面平行; ③若一個平面內(nèi)任何一條直線都平行于另一個平面,則這兩個平面平行; ④若一個平面內(nèi)的兩條相交直線都平行于另一個平面,則這兩個平面平行. A.①③ B.②④ C.②③④ D.③④,1 2 3 4,,,,,解析:如圖所示,在長方體ABCD-A1B1C1D1中,在平面ABCD內(nèi),在AB上任取一點(diǎn)E,過點(diǎn)
10、E作EF∥AD交CD于F,則由線面平行的判定定理知,EF,BC都平行于平面ADD1A1. 用同樣的方法可以在平面ABCD內(nèi)作出無數(shù) 條直線都與平面ADD1A1平行,但是平面ABCD 與平面ADD1A1不平行. 因此,命題①②都不正確. 命題③正確,事實(shí)上,因?yàn)橐粋€平面內(nèi)任意一條直線都平行于另一個平面,所以這兩個平面必?zé)o公共點(diǎn)(要注意“任意一條直線”與“無數(shù)條直線”的區(qū)別). 命題④是平面與平面平行的判定定理,故正確. 答案:D,1 2 3 4,,,,,3.已知直線a,b,c為三條不重合的直線,平面α,β,γ為三個不重合平面,則以下三個命題: ①a∥c,b∥c?a∥b;②γ∥α,β∥α?γ
11、∥β;③a∥γ,α∥γ?a∥α. 其中正確命題的序號是 . 解析:由平行公理,知①正確;由平面平行的傳遞性知②正確;③不正確,因?yàn)閍可能在α內(nèi). 答案:①②,1 2 3 4,,,,,4.如圖所示,在正方體ABCD-A1B1C1D1中,S是B1D1的中點(diǎn),E,F,G分別是BC,DC和SC的中點(diǎn).求證: (1)直線EG∥平面BDD1B1; (2)平面EFG∥平面BDD1B1.,1 2 3 4,,,,,證明:(1)如圖所示,連接SB. ∵E,G分別是BC,SC的中點(diǎn),∴EG∥SB. 又SB?平面BDD1B1,EG?平面BDD1B1, ∴直線EG∥平面BDD1B1. (2)如圖所示,連接SD. ∵F,G分別是DC,SC的中點(diǎn),∴FG∥SD. 又SD?平面BDD1B1,FG?平面BDD1B1, ∴直線FG∥平面BDD1B1. 又EG∥平面BDD1B1,且直線EG?平面EFG,直線FG?平面EFG,直線EG∩直線FG=G, ∴平面EFG∥平面BDD1B1.,