中考數(shù)學專題復習《幾何證明》壓軸題

上傳人:伴*** 文檔編號:130819705 上傳時間:2022-08-05 格式:DOCX 頁數(shù):6 大?。?30.98KB
收藏 版權申訴 舉報 下載
中考數(shù)學專題復習《幾何證明》壓軸題_第1頁
第1頁 / 共6頁
中考數(shù)學專題復習《幾何證明》壓軸題_第2頁
第2頁 / 共6頁
中考數(shù)學專題復習《幾何證明》壓軸題_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《中考數(shù)學專題復習《幾何證明》壓軸題》由會員分享,可在線閱讀,更多相關《中考數(shù)學專題復習《幾何證明》壓軸題(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、學習必備 歡迎下載 幾何證明壓軸題(中考) 1、如圖,在梯形?ABCD?中,AB∥CD,∠BCD=90°,且?AB=1,BC=2,tan∠ADC=2. (1)?求證:DC=BC; (2)?E?是梯形內(nèi)一點,F(xiàn)?是梯形外一點,且∠EDC=∠FBC,DE=BF,試判斷 CF?的形 狀,并證明你的結(jié)論; (3)?在(2)的條件下,當?BE:CE=1:2,∠BEC=135°時,求?sin∠BFE?的值. [解析]  (1)過?A?作?DC?的垂線?AM?交?DC?于?M,  A???????B 則?AM=BC=2. 又?

2、tan∠ADC=2,所以?DM?= 2 2  =?1.即?DC=BC. E (2)等腰三角形. 證明:因為?DE?=?DF?,?DEDC?=?DFBC?,?DC?=?BC?.  F 所以,△DEC≌△BFC D C 所以,?CE?=?CF?,?DECD?=?DBCF?. 所以,?DECF?=?DBCF?+?DBCE?=?DECD?+?DBCE?=?DBCD?=?90° 即△ECF?是等腰直角三角形. (3)設?BE?=?k?,則?CE?=?CF?=?2k?,所以?EF?=?2?2k?. 因為?

3、DBEC?=?135°?,又?DCEF?=?45°?,所以?DBEF?=?90°?. 所以?BF?= k?2?+?(2?2k?)2?=?3k 所以?sin?DBFE?= k??1 =??. 3k??3 2、已知:如圖,在□?ABCD?中,E、F?分別為邊?AB、CD?的中點,BD?是對角線,AG∥DB 交?CB?的延長線于?G. ()求證: ADE≌△CBF; (2)若四邊形?BEDF?是菱形,則四邊形?AGBD?是什么特殊四邊形?并證明你的結(jié)論. [解析]  (1)∵四邊形?ABCD?是平行四邊形,

4、 ∴AE=??1 ∴∠1=∠C,AD=CB,AB=CD?. ∵點?E?、F?分別是?AB、CD?的中點, 1 AB?,CF= CD?. 2 2 ∴AE=CF ∴△ADE≌△CBF?. (2)當四邊形?BEDF?是菱形時, 四邊形?AGBD?是矩形. ∵四邊形?ABCD?是平行四邊形, ∴AD∥BC?. 學習必備 歡迎下載 ∵AG∥BD?, ∴四邊形?AGBD?是平行四邊形. ∵四邊形?BEDF?是菱形, ∴DE=BE?. ∵AE=BE?, ∴AE=BE=DE?. ∴∠1=∠2,∠3=∠4. ∵∠1+∠2+∠3+∠4=180

5、°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°. ∴四邊形?AGBD?是矩形 3、如圖?13-1,一等腰直角三角尺?GEF?的兩條直角邊與正方形?ABCD?的兩條邊分別重合在 一起.現(xiàn)正方形?ABCD?保持不動,將三角尺?GEF?繞斜邊?EF?的中點?O(點?O?也是?BD?中點) 按順時針方向旋轉(zhuǎn). (1)如圖?13-2,當?EF?與?AB?相交于點?M,GF?與?BD?相交于點?N?時,通過觀察或測 量?BM,F(xiàn)N?的長度,猜想?BM,F(xiàn)N?滿足的數(shù)量關系,并證明你的猜想; (2)若三角尺?GEF?旋轉(zhuǎn)到如圖?13-3?所示的位置

6、時,線段?FE?的延長線與?AB?的延長 線相交于點?M,線段?BD?的延長線與?GF?的延長線相交于點?N,此時,(1)中的 猜想還成立嗎?若成立,請證明;若不成立,請說明理由. D(?F?)  C F D????????????C N  D??????????C O  G N  O F  O A(?G?) B(?E?)  A????????M??B??????????A E???????????????????G E B??M 圖?13-1 圖?13-2

7、 圖?13-3 [解析](1)BM=FN. 證明:∵△GEF?是等腰直角三角形,四邊形?ABCD?是正方形, ∴?∠ABD?=∠F?=45°,OB?=?OF. 又∵∠BOM=∠FON, ∴?△OBM≌△OFN?. ∴?BM=FN. (2)?BM=FN?仍然成立. (3)?證明:∵△GEF?是等腰直角三角形,四邊形?ABCD?是正方形, ∴∠DBA=∠GFE=45°,OB=OF. ∴∠MBO=∠NFO=135°. 又∵∠MOB=∠NOF, ∴?△OBM≌△OFN?. ∴?BM=FN. 學習必備 歡迎下載 4、如圖,已知⊙O?的直徑?A

8、B?垂直于弦?CD?于?E,連結(jié)?AD、BD、OC、OD,且?OD=5。 (1)若?sin?∠BAD?=?3 5  ,求?CD?的長; (2)若?∠ADO:∠EDO=4:1,求扇形?OAC(陰影部分)的面積(結(jié)果保留p?)。 [解析]  (1)因為?AB?是⊙O?的直徑,OD=5 5??,所以??BD??=??3 5??,所以?BD?=?6 所以?CB?=?BD?,?AC?=?AD⌒ 所以∠ADB=90°,AB=10 在? ABD?中,?sin?∠BAD?=?BD AB 又?sin?∠BAD?

9、=?3 AD?= AB?2?-?BD?2?=?102?-?62?=?8 因為∠ADB=90°,AB⊥CD 所以?DE·AB?=?AD·BD,CE?=?DE 所以?DE?′?10?=?8?′?6 所以?DE?=?24 5 所以?CD?=?2?DE?=?48 5 (2)因為?AB?是⊙O?的直徑,AB⊥CD ⌒ ⌒ ⌒ 所以∠BAD=∠CDB,∠AOC=∠AOD 因為?AO=DO,所以∠BAD=∠ADO 所以∠CDB=∠ADO 設∠ADO=4x,則∠CDB=4x 由∠ADO:∠EDO=4:1,則∠EDO=x 因為∠ADO+∠EDO+∠ED

10、B=90° 所以?4?x?+?4?x?+?x?=?90° 所以?x=10° 所以∠AOD=180°-(∠OAD+∠ADO)=100° 所以∠AOC=∠AOD=100° S 360 扇形OAC?=?100?′?p?′?52?= 125 18?p ∴??EH =???? =???? ,∵HE=EC,∴BF=FD 學習必備 歡迎下載 5、如圖,已知:C?是以?AB?為直徑的半圓?O?上一點,CH⊥AB?于點?H,直線?AC?與過 B?點的切線相交于點?D,E?為?CH?中點,連接?AE?并延長交?BD?于點?F,直線?CF?交直線?

11、AB 于點?G. (1)求證:點?F?是?BD?中點; (2)求證:CG?是⊙O?的切線; (3)若?FB=FE=2,求⊙O?的半徑. [解析]?(1)證明:∵CH⊥AB,DB⊥,∴ AEH∽AFB,△ACE∽△ADF AE CE BF AF FD (2)方法一:連接?CB、OC, ∵AB?是直徑,∴∠ACB=90°∵F?是?BD?中點, ∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO ∴∠OCF=90°,∴CG?是⊙O?的切線---------6′ 方法二:可證明△OCF≌△OBF(參照方法一標準得分) (3)解:由?FC=FB=FE?得:∠

12、FCE=∠FEC 可證得:FA=FG,且?AB=BG 由切割線定理得:(2+FG)2=BG×AG=2BG2 ? 在? BGF?中,由勾股定理得:BG2=FG2-BF2 ? 由??、??得:FG2-4FG-12=0 解之得:FG1=6,F(xiàn)G2=-2(舍去) ∴AB=BG=?4?2 ∴⊙O?半徑為?2?2 6、如圖,已知?O?為原點,點?A?的坐標為(4,3), ⊙A?的半徑為?2.過?A?作直線?l?平行于?x?軸,點?P?在直線?l?上運動. (1)當點?P?在⊙O?上時,請你直接寫出它的坐標; (2)設點?P?的橫坐標為?12,試判斷直線?OP?與⊙A?的位置關

13、系,并說明理由. [解析] 解:?⑴點?P?的坐標是(2,3)或(6,3) ⑵作?AC⊥OP,C?為垂足. ∵∠ACP=∠OBP=?90?,∠1=∠1 ∴ ∽ OBP ∴ AC??AP = OB??OP 在?RtDOBP?中,?OP?=?OB2?+?BP2?=?153?,又?AP=12-4=8, ∴ ∴AC=?24???153?≈1.94 ∵1.94<2 ∴OP?與⊙A?相交. AC????8 = 3????153 學習必備 歡迎下載 7、如圖,延長⊙O?的半徑?OA?到?B,使?OA=AB, D

14、E?是圓的一條切線,E?是切點,過點?B?作?DE?的垂線, 垂足為點?C. 求證:∠ACB= ∠OAC. [解析] 1 3  D  E C 證明:連結(jié)?OE、AE,并過點?A?作?AF⊥DE?于點?F, (3 O A 分) B ∵DE?是圓的一條切線,E?是切點, ∴OE⊥DC, 又∵BC⊥DE, ∴OE∥AF∥BC. ∴∠1=∠ACB,∠2=∠3. ∵OA=OE, ∴∠4=∠3. ∴∠4=∠2. 又∵點?A?是?OB?的中點, ∴點?F?是?EC?的中點. ∴AE=

15、AC. ∴∠1=∠2. ∴∠4=∠2=∠1. 即∠ACB=?1 3  ∠OAC. 8、如圖1,一架長?4?米的梯子?AB?斜靠在與地面?OM?垂直的墻壁?ON?上,梯子與地面的傾 斜角α為?60?o?. ⑴求?AO?與?BO?的長; ⑵若梯子頂端?A?沿?NO?下滑,同時底端?B?沿?OM?向右滑行. ①如圖?2,設?A?點下滑到?C?點,B?點向右滑行到?D?點,并且?AC:BD=2:3,試計算梯子 頂端?A?沿?NO?下滑多少米; ②如圖3,當?A?點下滑到?A’點,B?點向右滑行到?B’點時,梯子?AB?的中點?

16、P?也隨之運 動到?P’點.若∠POP’=?15o?,試求?AA’的長. 學習必備 歡迎下載 [解析] ⑴?RtDAOB?中,∠O=?90?,∠α=?60?o ∴,∠OAB=?30?o?,又AB=4?米, ∴?OB?= 1 2  AB?=?2?米. (???? )?+?(2?+?3x?) ∴??2??3?-?2?x =?42???-------------?(5?分) 2 (???? ) 3 OA?=?AB?×?sin?60?=?4?′ =?2?3?米.?-------------

17、-?(3?分) 2 ⑵設?AC?=?2?x,?BD?=?3x,?在?RtDCOD?中, OC?=?2?3?-?2?x,?OD?=?2?+?3x,?CD?=?4 根據(jù)勾股定理:?OC?2?+?OD2?=?CD?2 2 ∴13x2?+?12?-?8?3?x?=?0 ∵?x?1?0 ∴13x?+?12?-?8?3?=?0 ∴?x?= 8?3?-?12 13  -------------?(7?分) AC=2x= 16?3?-?24 13 16?3?-?24 即梯子頂端?A?沿?NO?下滑了 米

18、. 13 ----?(8?分) ⑶∵點?P?和點?P¢?分別是?RtDAOB?的斜邊 AB?與?RtDA'OB?'?的斜邊?A'?B?'?的中點 ∴?PA?=?PO?,?P?'?A'?=?P'?O -------------?(9?分) ∴?DPAO?=?DAOP,?DP¢A¢O?=?DA¢OP¢?-------?(10?分) ∴?DP¢A¢O?-D?PAO?=?DA¢OP¢?-D?AOP ∴?DP¢A¢O?-?DPAO?=?DPOP¢?=?15 ∵?DPAO?=?30 ∴?DP¢A¢O?=?45 -----------------------?(11?分) ∴?A¢O?=?A¢B¢?′?cos?45?=?4?′ 2 2  =?2?2?-----?(12?分) ∴?AA¢?=?OA?-?A¢O?=?(2?3?-?2?2)?米.?--------?(13?分)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!