2020屆高考數(shù)學一輪復習 第六篇 不等式 第3節(jié) 二元一次不等式(組)與簡單的線性規(guī)劃問題課時作業(yè) 理(含解析)新人教A版

上傳人:Sc****h 文檔編號:116581827 上傳時間:2022-07-05 格式:DOC 頁數(shù):11 大?。?.61MB
收藏 版權申訴 舉報 下載
2020屆高考數(shù)學一輪復習 第六篇 不等式 第3節(jié) 二元一次不等式(組)與簡單的線性規(guī)劃問題課時作業(yè) 理(含解析)新人教A版_第1頁
第1頁 / 共11頁
2020屆高考數(shù)學一輪復習 第六篇 不等式 第3節(jié) 二元一次不等式(組)與簡單的線性規(guī)劃問題課時作業(yè) 理(含解析)新人教A版_第2頁
第2頁 / 共11頁
2020屆高考數(shù)學一輪復習 第六篇 不等式 第3節(jié) 二元一次不等式(組)與簡單的線性規(guī)劃問題課時作業(yè) 理(含解析)新人教A版_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020屆高考數(shù)學一輪復習 第六篇 不等式 第3節(jié) 二元一次不等式(組)與簡單的線性規(guī)劃問題課時作業(yè) 理(含解析)新人教A版》由會員分享,可在線閱讀,更多相關《2020屆高考數(shù)學一輪復習 第六篇 不等式 第3節(jié) 二元一次不等式(組)與簡單的線性規(guī)劃問題課時作業(yè) 理(含解析)新人教A版(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第3節(jié) 二元一次不等式(組)與簡單的線性規(guī)劃問題 課時作業(yè) 基礎對點練(時間:30分鐘) 1.某校今年計劃招聘女教師a名,男教師b名,若a,b滿足不等式組設這所學校今年計劃招聘教師最多x名,則x=(  ) (A)10           (B)12 (C)13 (D)16 C 解析:畫出約束條件所表示的區(qū)域,即可行域,如圖陰影部分所示,作直線l:b+a=0,平移直線l,再由a,b∈N,可知當a=6,b=7時,x=a+b=13.故選C. 2.(改編題)設實數(shù)x,y滿足不等式組則ω=的取值范圍是(  ) (A)(-,1) (B)[-,1) (C)(,1) (D

2、)[,1) B 解析:作出滿足條件的可行域,如圖陰影部分所示,由于可以看作直線的斜率形式,于是問題可以轉化為求可行域內(nèi)的哪些點與A(-1,1)連線的斜率最大、最小問題. 如圖,當直線y=ωx+ω+1過點B時,斜率最小,此時ω=kAB==-; 當直線y=ωx+ω+1與x-y=0平行時,斜率最大,此時ω=1,但它與陰影區(qū)域無交點,取不到. 于是連線斜率的范圍為,即ω=的取值范圍是. 3.已知變量x,y滿足約束條件x+y-3≥0,2x-y-9≤0,y≤2,若使z=ax+y取得最小值的最優(yōu)解有無窮多個,則實數(shù)a的取值集合是(  ) (A){-2,0} (B){1,-2} (C){

3、0,1} (D){-2,0,1} B 解析:作出不等式組表示的平面區(qū)域,如圖中陰影部分所示. 由z=ax+y得y=-ax+z. 若a=0,則直線y=-ax+z=z,此時z取得最小值的最優(yōu)解只有一個,不滿足題意; 若-a>0,則直線y=-ax+z在y軸上的截距取得最小值時,z取得最小值,此時當直線y=-ax與直線2x-y-9=0平行時滿足題意,此時-a=2,解得a=-2; 若-a<0,則直線y=-ax+z在y軸上的截距取得最小值時,z取得最小值,此時當直線y=-ax與直線x+y-3=0平行時滿足題意,此時-a=-1,解得a=1. 綜上可知,a=-2或a=1.故選B. 4.設

4、變量x,y滿足約束條件且不等式x+2y≤14恒成立,則實數(shù)a的取值范圍是(  ) (A)[8,10] (B)[8,9] (C)[6,9] (D)[6,10] A 解析:不等式組表示的平面區(qū)域如圖中陰影部分所示,顯然a≥8,否則可行域無意義.由圖可知x+2y在點(6,a-6)處取得最大值2a-6,由2a-6≤14得,a≤10,故選A. 5.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克,B原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗A、B原料都

5、不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是(  ) (A)1 800元 (B)2 400元 (C)2 800元 (D)3 100元 C 解析:設生產(chǎn)甲產(chǎn)品x桶,乙產(chǎn)品y桶,每天利潤為z元, 則z=300x+400y. 作出可行域,如圖陰影部分所示.作直線300x+400y=0,向右上平移,過點A時,z=300x+400y取最大值,由 得∴A(4,4),∴zmax=300×4+400×4=2 800.故選C. 6.如果點P在平面區(qū)域上,點Q在曲線x2+(y+2)2=1上.那么|PQ|的最小值為(  ) (A)

6、(B)-1 (C)2-1 (D)-1 A 解析:如圖,當P取點,Q取點(0,-1)時,|PQ|的最小值為.故選A. 7.設x,y滿足約束條件若z=的最小值為,則a的值為________. 解析:∵=1+,而表示過點(x,y)與(-1,-1)連線的斜率,易知a>0,∴可作出可行域,知的最小值是,即min===?a=1. 答案:1 8.如圖,點(x,y)在四邊形ABCD內(nèi)部和邊界上運動,那么2x-y的最小值為________. 解析:令b=2x-y,則y=2x-b,如圖所示,作斜率為2的平行線y=2x-b, 當經(jīng)過點A時,直線在y軸上的截距最大,為-b,此時b

7、=2x-y取得最小值,為b=2×1-1=1. 答案:1 9.(2019西安期末)設x,y滿足約束條件則z=2x-y取得最大值時的最優(yōu)解為________. 解析:作可行域: Z表示目標函數(shù)線縱截距的相反數(shù),所以要使z最大,即縱截距最小,所以當目標函數(shù)線過B(5,2)時,目標函數(shù)值最大,為2×5-2=8. 答案:(5,2) 10.(2019永州三模)設實數(shù)x,y滿足約束條件,則z=的最大值是________. 解析:z=表示點(x,y)到(0,0)的斜率, 由可行域可知,過點(2,2)時,取最大值1. 答案:1 能力提升練(時間:15分鐘) 11.(2019池州期末

8、)實數(shù)x,y滿足,目標函數(shù)z=x-2y的最大值為(  ) (A)1 (B)-1 (C)2 (D)-2 B 解析:畫出表示的可行域,如圖區(qū)域為開放的陰影部分,可求得B(5,3),由圖可知,函數(shù)z=x-2y過點(5,3)時, zmax=x-2y=5-6=-1,函數(shù)z=x-2y的最大值為-1,故選B. 12.當x,y滿足不等式組時,-2≤kx-y≤2恒成立,則實數(shù)k的取值范圍是(  ) (A)[-1,1] (B)[-2,0] (C)[-,] (D)[-,0] D 解析:作出不等式組表示的平面區(qū)域,如圖中陰影部分所示,設z=kx-y,由得 即B(-2,2),由得即

9、C(2,0), 由得即A(-5,-1),要使不等式-2≤kx-y≤2恒成立,則即所以-≤k≤0,故選D. 13.(2019江西南昌市高三調(diào)研)若關于x、y的不等式組表示的平面區(qū)域是一個三角形,則k的取值范圍是________. 解析:不等式|x|+|y|≤2表示的平面區(qū)域為如圖所示的正方形ABCD及其內(nèi)部. 直線y+2=k(x+1)過定點P(-1,-2),斜率為k, 要使平面區(qū)域表示一個三角形,則KPD<k≤kPA 或k<kPC. 而kPD=0,kPA==, kPC==-2,故0<k≤或k<-2. 答案:(-∞,-2)∪(0,] 14.(2019蚌埠二中)已知實數(shù)x,

10、y滿足約束條件,則z=x+2y的最小值為________. 解析:作可行域,則直線z=x+2y過點A(2,0)時z取最小值2. 答案:2 15.(2019衡水中學)已知實數(shù)x,y滿足約束條件則z=的最大值為________. 解析:作出不等式表示的平面區(qū)域(如圖示:陰影部分): 其中C z==1+,即m=表示可行域上的動點與定點P(-1,2)連線的斜率, 最大值為kPC=- ∴y=的最大值為1-= 答案: 16.咖啡館配制兩種飲料,甲種飲料每杯含奶粉9克、咖啡4克、糖3克,乙種飲料每杯含奶粉4克、咖啡5克、糖10克.已知每天原料的使用限額為奶粉3 600克、咖啡2 000克、糖3 000克,甲種飲料每杯能獲利潤0.7元,乙種飲料每杯能獲利潤1.2元,每天應配制兩種飲料各多少杯能獲利最大? 解:設每天配制甲種飲料x杯、乙種飲料y杯可以獲得最大利潤,利潤總額為z元. 由條件知:z=0.7x+1.2y,變量x、y滿足 作出不等式組所表示的可行域如圖所示. 作直線l:0.7x+1.2y=0, 把直線l向右上方平移至經(jīng)過A點的位置時, z=0.7x+1.2y取最大值. 由方程組 得A點坐標(200,240). 答:應每天配制甲種飲料200杯,乙種飲料240杯方可獲利最大. 11

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!