江蘇省無錫地區(qū)中考數(shù)學(xué)選擇填空壓軸題 專題5 三角形綜合問題

上傳人:xt****7 文檔編號(hào):106077103 上傳時(shí)間:2022-06-13 格式:DOC 頁數(shù):22 大?。?00KB
收藏 版權(quán)申訴 舉報(bào) 下載
江蘇省無錫地區(qū)中考數(shù)學(xué)選擇填空壓軸題 專題5 三角形綜合問題_第1頁
第1頁 / 共22頁
江蘇省無錫地區(qū)中考數(shù)學(xué)選擇填空壓軸題 專題5 三角形綜合問題_第2頁
第2頁 / 共22頁
江蘇省無錫地區(qū)中考數(shù)學(xué)選擇填空壓軸題 專題5 三角形綜合問題_第3頁
第3頁 / 共22頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省無錫地區(qū)中考數(shù)學(xué)選擇填空壓軸題 專題5 三角形綜合問題》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省無錫地區(qū)中考數(shù)學(xué)選擇填空壓軸題 專題5 三角形綜合問題(22頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、江蘇省無錫地區(qū)中考數(shù)學(xué)選擇填空壓軸題 專題5 三角形綜合問題 例1.如圖所示,矩形ABCD中,AB=4,,點(diǎn)E是折線ADC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)A不重合),點(diǎn)P是點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn).在點(diǎn)E運(yùn)動(dòng)的過程中,使△PCB為等腰三角形的點(diǎn)E的位置共有( ?。? A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè) 同類題型1.1 如圖,在鈍角△ABC中,分別以AB和AC為斜邊向△ABC的外側(cè)作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于點(diǎn)M,取BC中點(diǎn)D,AC中點(diǎn)N,連接DN、DE、DF.下列結(jié)論:①EM=DN;②S四邊形ABDN;③DE=DF;④DE⊥DF.

2、其中正確的結(jié)論的個(gè)數(shù)是( ?。? A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 同類題型1.2 如圖,D,E分別是△ABC的邊BC,AC上的點(diǎn),若∠B=∠C,∠ADE=∠AED,則( ?。? A.當(dāng)∠B為定值時(shí),∠CDE為定值 B.當(dāng)∠1為定值時(shí),∠CDE為定值 C.當(dāng)∠2為定值時(shí),∠CDE為定值 D.當(dāng)∠3為定值時(shí),∠CDE為定值 同類題型1.3 如圖,在△ABC中,,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為______________. 例2.如圖,在直角梯形ABCD中,AD∥BC,∠AB

3、C=90°,AB=BC,E為AB邊上一點(diǎn),∠BCE=15°,且AE=AD.連接DE交對(duì)角線AC于H,連接BH.下列結(jié)論: ①ACD≌△ACE;②△CDE為等邊三角形;③EH=2EB;④.其中正確的結(jié)論是________. 同類題型2.1 如圖所示,已知:點(diǎn)A(0,0),,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè),第2個(gè),第3個(gè),…,則第n個(gè)等邊三角形的邊長(zhǎng)等于____________. 同類題型2.2 如圖,點(diǎn)P在等邊△ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到P'

4、C,連接AP',則sin∠PAP'的值為_________. 例3.如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論: ①∠A;②以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切; ③EF是△ABC的中位線;④設(shè)OD=m,AE+AF=n,則mn.其中正確的結(jié)論是 ( ?。? A.①②③ B.①③④ C.②③④ D.①②④ 同類題型3.1 如圖所示,四邊形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.則BD的長(zhǎng)為(  ) A. B.

5、 C. D. 同類題型3.2 如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個(gè)端點(diǎn)分別在相互垂直的射線OM、ON上滑動(dòng),下列結(jié)論: ①若C、O兩點(diǎn)關(guān)于AB對(duì)稱,則;②C、O兩點(diǎn)距離的最大值為4; ③若AB平分CO,則AB⊥CO;④斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑的長(zhǎng)為; 其中正確的是______________(把你認(rèn)為正確結(jié)論的序號(hào)都填上). 同類題型3.3 如圖,直角△ABC中,∠B=30°,點(diǎn)O是△ABC的重心,連接CO并延長(zhǎng)交AB于點(diǎn)E,過點(diǎn)E作EF⊥AB交BC于點(diǎn)F,連接AF交CE于點(diǎn)M,則的值為 ( ?。? A. B. C

6、. D. 例4.如圖,在△ABC中,4AB=5AC,AD為△ABC的角平分線,點(diǎn)E在BC的延長(zhǎng)線上,EF⊥AD于點(diǎn)F,點(diǎn)G在AF上,F(xiàn)G=FD,連接EG交AC于點(diǎn)H.若點(diǎn)H是AC的中點(diǎn),則的值為________. 同類題型4.1 如圖,已知是△ABC的中線,過點(diǎn)作∥AC交BC于點(diǎn),連接交于點(diǎn);過點(diǎn)作∥AC交BC于點(diǎn),連接交于點(diǎn);過點(diǎn)作∥AC交BC于點(diǎn),…,如此繼續(xù),可以依次得到點(diǎn),,…,和點(diǎn),,…,,則=_________AC. 同類題型4.2 如圖,過銳角△ABC的頂點(diǎn)A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延長(zhǎng)線于點(diǎn)F.在AF上取點(diǎn)M

7、,使得AF,連接CM并延長(zhǎng)交直線DE于點(diǎn)H.若AC=2,△AMH的面積是,則的值是___________. 例5. 如圖,△ABC的面積為S.點(diǎn),,,…,是邊BC的n等分點(diǎn)(n≥3,且n為整數(shù)),點(diǎn)M,N分別在邊AB,AC上,且,連接,,,…,,連接NB,,,…,,線段與NB相交于點(diǎn),線段與相交于點(diǎn),線段與相交于點(diǎn),…,線段與相交于點(diǎn),則,,,…,的面積和是 ____________.(用含有S與n的式子表示) 同類題型5.1如圖,四邊形ABCD是邊長(zhǎng)為9的正方形紙片,將其沿MN折疊,使點(diǎn)B落在CD邊上的B′處,點(diǎn)A對(duì)應(yīng)點(diǎn)為A′,且B′C=3,則AM的長(zhǎng)是

8、 ( ?。? A.1.5 B.2 C.2.25 D.2.5 同類題型5.2 如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點(diǎn)D是BC的中點(diǎn),將△ABD沿AD翻折得到△AED,連CE,則線段CE的長(zhǎng)等于 (  ) A.2 B. C. D. 同類題型5.3 如圖,在Rt△ABC中,∠A=90°,AB=AC,+1,點(diǎn)M,N分別是邊BC,AB上的動(dòng)點(diǎn),沿MN所在的直線折疊∠B,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長(zhǎng)為____________. 同類題型5.4 如圖,在矩

9、形ABCD中,∠B的平分線BE與AD交于點(diǎn)E,∠BED的平分線EF與DC交于點(diǎn)F,若AB=9,DF=2FC,則BC=_________________.(結(jié)果保留根號(hào)) 參考答案 例1.如圖所示,矩形ABCD中,AB=4,,點(diǎn)E是折線ADC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)A不重合),點(diǎn)P是點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn).在點(diǎn)E運(yùn)動(dòng)的過程中,使△PCB為等腰三角形的點(diǎn)E的位置共有( ?。? A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè) 解:①BP為等腰三角形一腰長(zhǎng)時(shí),符合點(diǎn)E的位置有2個(gè),是BC的垂直平分線與以B為圓心BA為半徑的圓的交點(diǎn)即是點(diǎn)P; ②BP為底邊時(shí),C為頂點(diǎn)時(shí),符合點(diǎn)E的位置有2

10、個(gè),是以B為圓心BA為半徑的圓與以C為圓心BC為半徑的圓的交點(diǎn)即是點(diǎn)P; ③以PC為底邊,B為頂點(diǎn)時(shí),這樣的等腰三角形不存在,因?yàn)橐訠為圓心BA為半徑的圓與以B為圓心BC為半徑的圓沒有交點(diǎn). 選C. 同類題型1.1 如圖,在鈍角△ABC中,分別以AB和AC為斜邊向△ABC的外側(cè)作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于點(diǎn)M,取BC中點(diǎn)D,AC中點(diǎn)N,連接DN、DE、DF.下列結(jié)論:①EM=DN;②S四邊形ABDN;③DE=DF;④DE⊥DF.其中正確的結(jié)論的個(gè)數(shù)是( ?。? A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 解:∵D是BC中點(diǎn),N是A

11、C中點(diǎn), ∴DN是△ABC的中位線, ∴DN∥AB,且AB; ∵三角形ABE是等腰直角三角形,EM平分∠AEB交AB于點(diǎn)M, ∴M是AB的中點(diǎn), ∴AB, 又∵AB, ∴EM=DN, ∴結(jié)論①正確; ∵DN∥AB, ∴△CDN∽ABC, ∵AB, ∴, ∴S_(四邊形ABDN), ∴結(jié)論②正確; 如圖1,連接MD、FN, ∵D是BC中點(diǎn),M是AB中點(diǎn), ∴DM是△ABC的中位線, ∴DM∥AC,且AC; ∵三角形ACF是等腰直角三角形,N是AC的中點(diǎn), ∴AC, 又∵AC, ∴DM=FN, ∵DM∥AC,DN∥AB, ∴四邊形AMDN

12、是平行四邊形, ∴∠AMD=∠AND, 又∵∠EMA=∠FNA=90°, ∴∠EMD=∠DNF, 在△EMD和△DNF中, , ∴△EMD≌△DNF, ∴DE=DF, ∴結(jié)論③正確; 如圖2,連接MD,EF,NF, ∵三角形ABE是等腰直角三角形,EM平分∠AEB, ∴M是AB的中點(diǎn),EM⊥AB, ∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°, ∴, ∵D是BC中點(diǎn),M是AB中點(diǎn), ∴DM是△ABC的中位線, ∴DM∥AC,且AC; ∵三角形ACF是等腰直角三角形,N是AC的中點(diǎn), ∴AC,∠FNA=90°,∠FAN=∠AFN=45°,

13、又∵AC, ∴FA, ∵∠EMD=∠EMA+∠AMD=90°+∠AMD, ∠EAF=360°-∠EAM-∠FAN-∠BAC =360°-45°-45°-(180°-∠AMD) =90°+∠AMD ∴∠EMD=∠EAF, 在△EMD和△∠EAF中, ∴△EMD∽△∠EAF, ∴∠MED=∠AEF, ∵∠MED+∠AED=45°, ∴∠AED+∠AEF=45°, 即∠DEF=45°, 又∵DE=DF, ∴∠DFE=45°, ∴∠EDF=180°-45°-45°=90°, ∴DE⊥DF, ∴結(jié)論④正確. ∴正確的結(jié)論有4個(gè):①②③④. 選D. 同類題型

14、1.2 如圖,D,E分別是△ABC的邊BC,AC上的點(diǎn),若∠B=∠C,∠ADE=∠AED,則( ?。? A.當(dāng)∠B為定值時(shí),∠CDE為定值 B.當(dāng)∠1為定值時(shí),∠CDE為定值 C.當(dāng)∠2為定值時(shí),∠CDE為定值 D.當(dāng)∠3為定值時(shí),∠CDE為定值 解:在△CDE中,由三角形的外角性質(zhì)得,∠AED=∠CDE+∠C, 在△ABD中,由三角形的外角性質(zhì)得,∠B+∠1=∠ADC=∠ADE+∠CDE, ∵∠B=∠C,∠ADE=∠AED, ∴∠B+∠1=∠CDE+∠C+∠CDE=2∠CDE+∠B, ∴∠1=2∠CDE, ∴當(dāng)∠1為定值時(shí),∠CDE為定值. 選B. 同

15、類題型1.3 如圖,在△ABC中,,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為______________. 解:將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,如圖所示. ∵,∠BAC=120°, ∴∠ACB=∠B=∠ACF=30°, ∴∠ECG=60°. ∵CF=BD=2CE, ∴CG=CE, ∴△CEG為等邊三角形, ∴EG=CG=FG, ∴∠CGE=30°, ∴△CEF為直角三角形. ∵∠BAC=120°,∠DAE=60°, ∴∠BAD+∠CAE=60°, ∴∠FAE=∠FA

16、C+∠CAE=∠BAD+∠CAE=60°. 在△ADE和△AFE中,, ∴△ADE≌△AFE(SAS), ∴DE=FE. 設(shè)EC=x,則BD=CD=2x,DE=FE=6-3x, 在Rt△CEF中,∠CEF=90°,CF=2x,EC=x, x, ∴x, , ∴-3. 例2.如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E為AB邊上一點(diǎn),∠BCE=15°,且AE=AD.連接DE交對(duì)角線AC于H,連接BH.下列結(jié)論: ①ACD≌△ACE;②△CDE為等邊三角形;③EH=2EB;④.其中正確的結(jié)論是________. 解:①∵∠ABC=90°,A

17、B=BC, ∴∠BAC=∠ACB=45°, 又∵∠BAD=90°, ∴∠BAC=∠DAC, 在△ACD和△ACE中, , ∴△ACD≌△ACE(SAS);故①正確; ②同理∠AED=45°,∠BEC=90°-∠BCE=90°-15°=75°, ∴∠DEC=60°, ∵△ACD≌△ACE, ∴CD=CE, ∴△CDE為等邊三角形.故②正確. ③∵△CHE為直角三角形,且∠HEC=60° ∴EC=2EH ∵∠ECB=15°, ∴EC≠4EB, ∴EH≠2EB;故③錯(cuò)誤. ④∵AE=AD,CE=CD, ∴點(diǎn)A與C在DE的垂直平分線上, ∴AC是DE的垂直平分線,

18、 即AC⊥DE, ∴CE>CH, ∵CD=CE, ∴CD>CH, ∵∠BAC=45°, ∴AH=EH, ∵, ∴,故④錯(cuò)誤. 答案為:①②. 同類題型2.1 如圖所示,已知:點(diǎn)A(0,0),,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè),第2個(gè),第3個(gè),…,則第n個(gè)等邊三角形的邊長(zhǎng)等于____________. 解:∵,OC=1, ∴BC=2, ∴∠OBC=30°,∠OCB=60°. 而為等邊三角形,=60°, ∴=30°,則O=90°. 在中,, 同理得:, 依此類推,第n個(gè)等邊

19、三角形的邊長(zhǎng)等于. 同類題型2.2 如圖,點(diǎn)P在等邊△ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到P'C,連接AP',則sin∠PAP'的值為_________. 解:連接PP′,如圖, ∵線段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到P'C, ∴CP=CP′=6,∠PCP′=60°, ∴△CPP′為等邊三角形, ∴PP′=PC=6, ∵△ABC為等邊三角形, ∴CB=CA,∠ACB=60°, ∴∠PCB=∠P′CA, 在△PCB和△P′CA中 , ∴△PCB≌△P′CA, ∴PB=P′A=10, ∵, ∴, ∴△APP′為直

20、角三角形,∠APP′=90°, ∴. 同類題型2.4 例3.如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論: ①∠A; ②以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切; ③EF是△ABC的中位線; ④設(shè)OD=m,AE+AF=n,則mn. 其中正確的結(jié)論是( ?。? A.①②③ B.①③④ C.②③④ D.①②④ 解:∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O, ∴∠ABC,∠ACB,∠A+∠ABC+∠ACB=180°, ∴∠A, ∴∠A;故

21、①正確; 過點(diǎn)O作OM⊥AB于M,作ON⊥BC于N,連接OA, ∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O, ∴ON=OD=OM=m, ∴mn;故④正確; ∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O, ∴∠EBO=∠OBC,∠FCO=∠OCB, ∵EF∥BC, ∴∠EOB=∠OBC,∠FOC=∠OCB, ∴∠EBO=∠EOB,∠FOC=∠FCO, ∴EB=EO,F(xiàn)O=FC, ∴EF=EO+FO=BE+CF, ∴以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切,故②正確, 根據(jù)已知不能推出E、F分別是AB、AC的中點(diǎn),故③正確, ∴其中正

22、確的結(jié)論是①②④ 選D. 同類題型3.1 如圖所示,四邊形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.則BD的長(zhǎng)為( ?。? A. B. C. D. 解:以A為圓心,AB長(zhǎng)為半徑作圓,延長(zhǎng)BA交⊙A于F,連接DF. ∵DC∥AB, ∴, ∴DF=CB=1,BF=2+2=4, ∵FB是⊙A的直徑, ∴∠FDB=90°, ∴. 選B. 同類題型3.2 如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個(gè)端點(diǎn)分別在相互垂直的射線OM、ON上滑動(dòng),下列結(jié)論: ①若C、O兩點(diǎn)關(guān)于AB對(duì)稱,則; ②C、O兩點(diǎn)距離的最大值為4; ③

23、若AB平分CO,則AB⊥CO; ④斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑的長(zhǎng)為; 其中正確的是______________(把你認(rèn)為正確結(jié)論的序號(hào)都填上). 解:在Rt△ABC中,∵BC=2,∠BAC=30°, ∴AB=4,, ①若C、O兩點(diǎn)關(guān)于AB對(duì)稱,如圖1, ∴AB是OC的垂直平分線, 則; 所以①正確; ②如圖1,取AB的中點(diǎn)為E,連接OE、CE, ∵∠AOB=∠ACB=90°, ∴AB=2, 當(dāng)OC經(jīng)過點(diǎn)E時(shí),OC最大, 則C、O兩點(diǎn)距離的最大值為4; 所以②正確; ③如圖2,當(dāng)∠ABO=30°時(shí),∠OBC=∠AOB=∠ACB=90°, ∴四邊形AOBC

24、是矩形, ∴AB與OC互相平分, 但AB與OC的夾角為60°、120°,不垂直, 所以③不正確; ④如圖3,斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑是:以O(shè)為圓心,以2為半徑的圓周的, 則:=π, 所以④不正確; 綜上所述,本題正確的有:①②. 同類題型3.3 如圖,直角△ABC中,∠B=30°,點(diǎn)O是△ABC的重心,連接CO并延長(zhǎng)交AB于點(diǎn)E,過點(diǎn)E作EF⊥AB交BC于點(diǎn)F,連接AF交CE于點(diǎn)M,則的值為(  ) A. B. C. D. 解:∵點(diǎn)O是△ABC的重心, ∴CE, ∵△ABC是直角三角形, ∴CE=BE=AE, ∵∠B=30°, ∴∠FAE=∠B=

25、30°,∠BAC=60°, ∴∠FAE=∠CAF=30°,△ACE是等邊三角形, ∴CE, ∴CE,即AE, ∵BE=AE, ∴AE, ∵EF⊥AB, ∴∠AFE=60°, ∴∠FEM=30°, ∴EF, ∴AE, ∴. 選D. 例4.如圖,在△ABC中,4AB=5AC,AD為△ABC的角平分線,點(diǎn)E在BC的延長(zhǎng)線上,EF⊥AD于點(diǎn)F,點(diǎn)G在AF上,F(xiàn)G=FD,連接EG交AC于點(diǎn)H.若點(diǎn)H是AC的中點(diǎn),則的值為________. 解:已知AD為角平分線,則點(diǎn)D到AB、AC的距離相等,設(shè)為h. ∵, ∴CD. 如右圖,延長(zhǎng)AC,在AC的延長(zhǎng)線上截取A

26、M=AB,則有AC=4CM.連接DM. 在△ABD與△AMD中, ∴△ABD≌△AMD(SAS), ∴CD. 過點(diǎn)M作MN∥AD,交EG于點(diǎn)N,交DE于點(diǎn)K. ∵M(jìn)N∥AD, ∴, ∴CD, ∴CD. ∴MD=KD,即△DMK為等腰三角形, ∴∠DMK=∠DKM. 由題意,易知△EDG為等腰三角形,且∠1=∠2; ∵M(jìn)N∥AD, ∴∠3=∠4=∠1=∠2, 又∵∠DKM=∠3(對(duì)頂角) ∴∠DMK=∠4, ∴DM∥GN, ∴四邊形DMNG為平行四邊形, ∴MN=DG=2FD. ∵點(diǎn)H為AC中點(diǎn),AC=4CM, ∴. ∵M(jìn)N∥AD, ∴,即, ∴

27、. 同類題型4.1 如圖,已知是△ABC的中線,過點(diǎn)作∥AC交BC于點(diǎn),連接交于點(diǎn);過點(diǎn)作∥AC交BC于點(diǎn),連接交于點(diǎn);過點(diǎn)作∥AC交BC于點(diǎn),…,如此繼續(xù),可以依次得到點(diǎn),,…,和點(diǎn),,…,,則=_________AC. 解:∵∥AC, ∴=∠BAC,=∠BCA, ∴∽△BAC, ∴. ∵是△ABC的中線, ∴. ∵∥AC, ∴,, ∴, ∴. ∵∥AC, ∴, ∴AC. 同理:AC. ∴. 同類題型4.2 如圖,過銳角△ABC的頂點(diǎn)A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延長(zhǎng)線于點(diǎn)F.在AF上取點(diǎn)M,使得AF,連接CM并延

28、長(zhǎng)交直線DE于點(diǎn)H.若AC=2,△AMH的面積是,則的值是___________. 解:過點(diǎn)H作HG⊥AC于點(diǎn)G, ∵AF平分∠CAE,DE∥BF, ∴∠HAF=∠AFC=∠CAF, ∴AC=CF=2, ∵AF, ∴, ∵DE∥CF, ∴△AHM∽△FCM, ∴, ∴AH=1, 設(shè)△AHM中,AH邊上的高為m, △FCM中CF邊上的高為n, ∴, ∵△AMH的面積為:, ∴AH﹒m ∴, ∴, 設(shè)△AHC的面積為S, ∴=3, ∴, ∴, ∴, ∴由勾股定理可知:, ∴ ∴. 例5. 如圖,△ABC的面積為S.點(diǎn),,,…,是邊BC

29、的n等分點(diǎn)(n≥3,且n為整數(shù)),點(diǎn)M,N分別在邊AB,AC上,且,連接,,,…,,連接NB,,,…,,線段與NB相交于點(diǎn),線段與相交于點(diǎn),線段與相交于點(diǎn),…,線段與相交于點(diǎn),則,,,…,的面積和是 ____________.(用含有S與n的式子表示) 解:連接MN,設(shè)BN交于,交于,交于. ∵, ∴MN∥BC, ∴, ∵點(diǎn),,,…,是邊BC的n等分點(diǎn), ∴, ∴四邊形B,四邊形,四邊形都是平行四邊形, 易知﹒S,﹒S,﹒S, ∴﹒S, ∴﹒S-(n-1)﹒﹒S-S=﹒S. 同類題型5.1如圖,四邊形ABCD是邊長(zhǎng)為9的正方形紙片,將其沿MN折疊,使點(diǎn)B落在C

30、D邊上的B′處,點(diǎn)A對(duì)應(yīng)點(diǎn)為A′,且B′C=3,則AM的長(zhǎng)是(  ) A.1.5 B.2 C.2.25 D.2.5 解:設(shè)AM=x, 連接BM,MB′, 在Rt△ABM中,, 在Rt△MDB′中,, ∵M(jìn)B=MB′, ∴, 即, 解得x=2, 即AM=2, 故選B. 同類題型5.2 如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點(diǎn)D是BC的中點(diǎn),將△ABD沿AD翻折得到△AED,連CE,則線段CE的長(zhǎng)等于(  ) A.2 B. C. D. 解:如圖連接BE交AD于O,作AH⊥BC于H. 在Rt△ABC中,∵AC=4,AB=

31、3, ∴=5, ∵CD=DB, ∴, ∵﹒AB﹒AC, ∴, ∵AE=AB, ∴點(diǎn)A在BE的垂直平分線上. ∵DE=DB=DC, ∴點(diǎn)D在BE使得垂直平分線上,△BCE是直角三角形, ∴AD垂直平分線段BE, ∵﹒BD﹒AH, ∴, ∴, 在Rt△BCE中,, 選D. 同類題型5.3 如圖,在Rt△ABC中,∠A=90°,AB=AC,+1,點(diǎn)M,N分別是邊BC,AB上的動(dòng)點(diǎn),沿MN所在的直線折疊∠B,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長(zhǎng)為____________. 解:①如圖1, 當(dāng)∠B′MC=90°,B′與A

32、重合,M是BC的中點(diǎn), ∴; ②如圖2,當(dāng)∠MB′C=90°, ∵∠A=90°,AB=AC, ∴∠C=45°, ∴△CMB′是等腰直角三角形, ∴MB′, ∵沿MN所在的直線折疊∠B,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B′, ∴BM=B′M, ∴BM, ∵+1, ∴+1, ∴BM=1, 綜上所述,若△MB′C為直角三角形,則BM的長(zhǎng)為或1. 同類題型5.4 如圖,在矩形ABCD中,∠B的平分線BE與AD交于點(diǎn)E,∠BED的平分線EF與DC交于點(diǎn)F,若AB=9,DF=2FC,則BC=_________________.(結(jié)果保留根號(hào)) 解:延長(zhǎng)EF和BC,交于點(diǎn)G ∵矩形ABCD中,∠B的角平分線BE與AD交于點(diǎn)E, ∴∠ABE=∠AEB=45°, ∴AB=AE=9, ∴直角三角形ABE中,, 又∵∠BED的角平分線EF與DC交于點(diǎn)F, ∴∠BEG=∠DEF ∵AD∥BC ∴∠G=∠DEF ∴∠BEG=∠G ∴ 由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC ∴ 設(shè)CG=x,DE=2x,則AD=9+2x=BC ∵BG=BC+CG ∴=9+2x+x 解得-3 ∴+3.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!