《2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第2節(jié) 兩直線的位置關(guān)系 理(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第2節(jié) 兩直線的位置關(guān)系 理(含解析)(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第2節(jié) 兩直線的位置關(guān)系 理(含解析)
1.(xx天津,5分)已知過點(diǎn)P(2,2) 的直線與圓(x-1)2+y2=5相切, 且與直線ax-y+1=0垂直, 則a=( )
A.- B.1
C.2 D.
解析:本題主要考查直線與圓的位置關(guān)系,考查平面上兩條直線垂直的條件,意在考查考生的等價(jià)轉(zhuǎn)化能力.由切線與直線ax-y+1=0垂直,得過點(diǎn)P(2,2)與圓心(1,0)的直線與直線ax-y+1=0平行,所以=a,解得a=2.
答案:C
2.(xx浙江,5分)設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:
2、x+(a+1)y+4=0平行”的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
解析:由a=1可得l1∥l2,反之由l1∥l2可得a=1或a=-2.
答案:A
3.(xx江西,5分)在直角三角形ABC中,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)P為線段CD的中點(diǎn),則=( )
A.2 B.4
C.5 D.10
解析:如圖,以C為原點(diǎn),CB,CA所在直線為x軸,y軸,建立平面直角坐標(biāo)系.設(shè)A(0,a),B(b,0),則D(,),P(,),由兩點(diǎn)間的距離公式可得|PA|2=+,
|PB|2=+,|PC|2=+.
所以==10.
答案:D
4.(xx浙江,4分)定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離.已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實(shí)數(shù)a=____________.
解析:因曲線C2:x2+(y+4)2=2到直線l:y=x的距離為-=2-=,則曲線C1與直線l不能相交,即x2+a>x,∴x2+a-x>0.
設(shè)C1:y=x2+a上一點(diǎn)為(x0,y0),
則點(diǎn)(x0,y0)到直線l的距離d===≥=,所以a=.
答案: