《2021-2022年六年級(jí)數(shù)學(xué)下冊(cè) 圓柱的表面積教案 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2021-2022年六年級(jí)數(shù)學(xué)下冊(cè) 圓柱的表面積教案 北師大版(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2021-2022年六年級(jí)數(shù)學(xué)下冊(cè) 圓柱的表面積教案 北師大版
教學(xué)目標(biāo)
1.能根據(jù)具體情境,靈活運(yùn)用圓柱表面積的計(jì)算方法解決生活中一些簡(jiǎn)單的問(wèn)題,感受到數(shù)學(xué)與生活的密切聯(lián)系。
2.通過(guò)想象、操作等活動(dòng),知道圓柱側(cè)面展開(kāi)后可以是一個(gè)長(zhǎng)方形,加深對(duì)圓柱特征的認(rèn)識(shí),發(fā)展空間觀念。
3.結(jié)合具體情境和動(dòng)手操作,探索圓柱側(cè)面積的計(jì)算方法,掌握?qǐng)A柱側(cè)面積和表面積的計(jì)算方法,能正確計(jì)算圓柱的側(cè)面積和表面積。
教學(xué)重點(diǎn)
認(rèn)識(shí)圓柱側(cè)面展開(kāi)圖的多樣性。
教學(xué)難點(diǎn)
能夠?qū)⒄归_(kāi)圖與圓柱體的各部分建立聯(lián)系,并推導(dǎo)出圓柱側(cè)面積、表面積的計(jì)算公式。
教學(xué)用具
課件、圓柱體的瓶子、剪子
教學(xué)過(guò)程
一
2、、創(chuàng)設(shè)情境,引起興趣。
拿出圓柱體茶葉罐,誰(shuí)能說(shuō)說(shuō)圓柱由哪幾部分組成的?想一想工人叔叔做這個(gè)茶葉罐是怎樣下料的?(學(xué)生會(huì)說(shuō)出做兩個(gè)圓形的底面再加一個(gè)側(cè)面)那么大家猜猜側(cè)面是怎樣做成的呢?(說(shuō)說(shuō)自己的猜想)
二、自主探究,發(fā)現(xiàn)問(wèn)題
研究圓柱側(cè)面積:
1.獨(dú)立操作:利用手中的材料(紙質(zhì)小圓柱,長(zhǎng)方形紙,剪刀),用自己喜歡的方式驗(yàn)證剛才的猜想。
2.觀察對(duì)比:觀察展開(kāi)的圖形各部分與圓柱體有什么關(guān)系?
3.小組交流:能用已有的知識(shí)計(jì)算它的面積嗎?
4.小組匯報(bào)。 (選出一個(gè)學(xué)生已經(jīng)展開(kāi)的圖形貼到黑板上)???
重點(diǎn)感受:圓柱體側(cè)面如果沿著高展開(kāi)是一個(gè)長(zhǎng)方形。(這里要強(qiáng)調(diào)沿著高剪
3、)這個(gè)長(zhǎng)方形與圓柱體上的那個(gè)面有什么關(guān)系?(長(zhǎng)方形的長(zhǎng)是圓柱體底面周長(zhǎng)、長(zhǎng)方形的寬是圓柱體的高)
長(zhǎng)方形的面積=圓柱的側(cè)面積即? 長(zhǎng)×寬? =底面周長(zhǎng)×高,所以,
圓柱的側(cè)面積=底面周長(zhǎng)×高? S 側(cè)?==? C? ×? h
如果已知底面半徑為r,圓柱的側(cè)面積公式也可以寫成:S側(cè)=2∏r×h
如果圓柱展開(kāi)是平行四邊形,是否也適用呢?
學(xué)生動(dòng)手操作,動(dòng)筆驗(yàn)證,得出了同樣適用的結(jié)論。(因?yàn)閯偛艑W(xué)生是用自己喜歡的方式剪開(kāi)的,所以可能已經(jīng)出現(xiàn)了這種情況。此時(shí)可以讓已經(jīng)得出平行四邊形的學(xué)生介紹一下他的剪法,然后大家拿出準(zhǔn)備好的圓柱紙盒用此法展開(kāi))
研究圓柱表面積:
1.現(xiàn)在請(qǐng)大家試
4、著求出這個(gè)圓柱體茶葉罐用料多少。
學(xué)生測(cè)量,計(jì)算表面積。??
2.圓柱體的表面積怎樣求呢?
得出結(jié)論:圓柱的表面積?。健A柱的側(cè)面積+底面積×2
3.動(dòng)畫(huà):圓柱體表面展開(kāi)過(guò)程
三、實(shí)際應(yīng)用
1.解決書(shū)上的例題。
2.填空。
圓柱的側(cè)面沿著高展開(kāi)可能是(?? )形,也可能是(??? )形。第二種情況是因?yàn)椋?????????? )。
3.要求一個(gè)圓柱的表面積,一般需要知道哪些條件(?????????? )。
4.教材第六頁(yè)試一試。
附送:
2021-2022年六年級(jí)數(shù)學(xué)下冊(cè) 圓柱的表面積教案 蘇教版
教學(xué)內(nèi)容
蘇教版小學(xué)數(shù)學(xué)第十二冊(cè)第二單元P21-23
5、。
教學(xué)目標(biāo)
1.經(jīng)歷觀察、操作、比較、推理、交流發(fā)現(xiàn)圓柱側(cè)面展形的形狀,推導(dǎo)得出圓柱側(cè)面積和表面積的計(jì)算公式。
2.理解圓柱表面積的含義,能夠運(yùn)用表面積計(jì)算公式計(jì)算圓柱的側(cè)面積和表面積。
3.進(jìn)一步增強(qiáng)同學(xué)們的空間觀念,增培養(yǎng)同學(xué)們解決實(shí)際問(wèn)題的能力。
教學(xué)重點(diǎn)
圓柱側(cè)面積和表面積公式的推導(dǎo)。
教學(xué)難點(diǎn)
把立體圖形轉(zhuǎn)化成平面圖形研究圓柱的側(cè)面積和表面積。
學(xué)具準(zhǔn)備
上一課學(xué)生自己做的圓柱形模型。教師準(zhǔn)備罐頭模型或?qū)嵨铩?
教學(xué)過(guò)程
一、導(dǎo)入新課
1.圓的周長(zhǎng)如何計(jì)算?計(jì)算下面圓的周長(zhǎng)?
(1)已知圓的半徑是3厘米。
(2)已知圓的直徑是4厘米。
2.圓的面積如何
6、計(jì)算?計(jì)算下面圓的面積?
(1)已知圓的半徑是6厘米。
(2)已知圓的直徑是4分米。
(3)已知圓的周長(zhǎng)是62.8厘米。
3.拿出課后做的圓柱形模型。說(shuō)出在做模型時(shí)你先剪下了什么?圓柱的側(cè)面是由什么圖形的紙圍起來(lái)的?那么上底面和下底面呢?
4.揭示課題:圓柱的表面積
二、新知探索
1.側(cè)面積公式的推導(dǎo)
(1)出示例2場(chǎng)景圖:一個(gè)圓柱形狀的罐頭,它的底面直徑11厘米,高15厘米。側(cè)面有一張商標(biāo)紙,紙的面積大約是多少平方厘米?(紙的接頭處忽略不計(jì))
(2)教師出示一個(gè)側(cè)面圍有商標(biāo)紙的罐頭模型。提問(wèn):如何轉(zhuǎn)化成我們已經(jīng)學(xué)過(guò)的圖形?
(3)根據(jù)學(xué)生回答后指名操作。沿著接縫處豎直剪開(kāi)
7、,得到什么?師根據(jù)學(xué)生操作與學(xué)生回答作出示意圖。如下:
(4)觀察:側(cè)面展開(kāi)后得到的長(zhǎng)方形與圓柱的側(cè)面有什么聯(lián)系?根據(jù)學(xué)生回答,教師板書(shū):
長(zhǎng)方形的長(zhǎng)=圓柱的底面周長(zhǎng)
長(zhǎng)方形的寬=圓柱的高
長(zhǎng)方形的面積=圓柱的側(cè)面積
(5)圓柱的側(cè)面積可以怎么求?(圓柱的側(cè)面積=圓柱的底面周長(zhǎng)×高)
(6)商標(biāo)紙的面積怎么計(jì)算呢?(3.14×11×15)
(7)小結(jié):圓柱形的側(cè)面展開(kāi)后得到什么?得到的長(zhǎng)方形與圓柱有什么聯(lián)系?圓柱的側(cè)面積如何計(jì)算?
(8)練習(xí):計(jì)算圓柱體的側(cè)面積
一個(gè)圓柱的底面周長(zhǎng)是32分米,高6分米。
一個(gè)圓柱的底面半徑是3米,高4米。
2.表面積公式的推導(dǎo)
(1
8、)出示例3:把圓柱體側(cè)面展開(kāi)圖畫(huà)在右邊的長(zhǎng)方形格子紙中(每個(gè)格子是邊長(zhǎng)1厘米的正方形)
(2)學(xué)生獨(dú)立作圖然后交流:你畫(huà)的是什么圖形?長(zhǎng)是多少厘米寬又是多少厘米?說(shuō)出你是怎樣想的?
(3)如果要你把這個(gè)圓柱表面的所有面都畫(huà)下來(lái),你還要怎樣作圖?
(4)總結(jié):圓柱的表面有三個(gè)面,分別是兩個(gè)底面(圓形)和一個(gè)側(cè)面。所以圓柱的表面積如何計(jì)算?(圓柱的表面積=底面積×2+側(cè)面積)
(5)計(jì)算出例3圖的表面積是多少?學(xué)生獨(dú)立完成,師巡視。
(6)完成書(shū)上P22的練一練的第二題的兩個(gè)題目。
三、鞏固練習(xí)
(1)小結(jié):圓柱的表面積等于什么?其中的側(cè)面積怎么計(jì)算?底面周長(zhǎng)怎么計(jì)算?底面積怎么計(jì)算?
(2)填表:P23第三題。
(3)完成書(shū)P23第一二大題。
解決實(shí)際問(wèn)題:要先說(shuō)出求的是圓柱的什么,再列式計(jì)算。
四、課后提高練習(xí)
一個(gè)圓柱的側(cè)面展開(kāi)后得到一個(gè)邊長(zhǎng)6.28分米的正方形。這個(gè)圓柱的表面積是多少平方平方厘米?