標(biāo)準(zhǔn)篩振篩機(jī)的總體及夾緊裝置的設(shè)計(jì)【含CAD圖紙】
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
I、畢業(yè)設(shè)計(jì)(論文)題目:
標(biāo)準(zhǔn)篩振篩機(jī)的總體及夾緊裝置的設(shè)計(jì)
II、畢 業(yè)設(shè)計(jì)(論文)使用的原始資料(數(shù)據(jù))及設(shè)計(jì)技術(shù)要求:
設(shè)計(jì)原始資料:1.電動(dòng)機(jī)額定功率P=0.37kW;
2.搖動(dòng)頻率 w=221rad/min;
3.振擊頻率 f=141次/min。
4. 匹配篩具直徑 200mm
設(shè)計(jì)技術(shù)要求:1.要求外文資料翻譯忠實(shí)原文;
2. 要求設(shè)計(jì)結(jié)構(gòu)合理、制造經(jīng)濟(jì);
3. 要求圖紙?jiān)O(shè)計(jì)規(guī)范,符合制圖標(biāo)準(zhǔn);
4. 要求畢業(yè)論文敘述條理清楚,設(shè)計(jì)計(jì)算正確,論文格式規(guī)范。
III、畢 業(yè)設(shè)計(jì)(論文)工作內(nèi)容及完成時(shí)間:
1. 收集、查閱有關(guān)文獻(xiàn)資料,外文資料翻譯(6000字符),撰寫開題報(bào)告;
2.28-3.25 4周
2. 制定設(shè)備工作原理; 3.28-4.8 2周
3. 標(biāo)準(zhǔn)篩振篩機(jī)的總體設(shè)計(jì); 4.11-4.22 2周
4. 標(biāo)準(zhǔn)篩振篩機(jī)夾緊裝置的設(shè)計(jì); 4.25-5.6 2周
5. 完成裝配圖及主要零件圖(折合A1圖4張); 5.9-5.27 3周
6. 撰寫畢業(yè)設(shè)計(jì)論文、畢業(yè)設(shè)計(jì)審查、畢業(yè)答辯。 5.30-6.24 4周
Ⅳ 、主 要參考資料:
[1]. 岑軍健, 趙菊初.非標(biāo)準(zhǔn)設(shè)備設(shè)計(jì)手冊( 第4 冊)[M] . 北京: 國防工業(yè)出版社
[2]. 沈 鴻, 周建南. 機(jī)械工作手冊(第10 卷) [M] . 北京: 機(jī)械工業(yè)出版社
[3]. 廣西柳州探礦機(jī)械廠.XSB - 70B 型Φ200 mm標(biāo)準(zhǔn)篩振篩機(jī)使用說明書[ R]
[4]. 廖念釗等. 互換性與技術(shù)測量. 北京:中國計(jì)量出版社,2011.2·第5版
[5]. Computer-aided diagnosis (CAD) and image-guided decision support Computerized
. Medical Imaging and Graphics 31 (2007) 195–197
航空工程 系(教研室) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 專業(yè)類 班
學(xué)生(簽名):
日期: 自 2011 年 2 月 28 日至 2011 年 6 月 24 日
指導(dǎo)教師(簽名):羅海泉
助理指導(dǎo)教師(并指出所負(fù)責(zé)的部分):
航空工程 系(室)主任(簽名):
附注:任務(wù)書應(yīng)該附在已完成的畢業(yè)設(shè)計(jì)說明書首頁。
COAL PREPARATION
TABLE 7-14. Effect of Geometry and Concentration of Feed Solids on throughput for a 1/6-in, diam hydro cyclone cleaning 1/4-in
Varying the distance between the bottom of the vortex finder and the hydro cyclone cone bottom. For example, the washed coal ash can be reduced by decreasing the diameter of the vortex finder, decreasing the length of the vortex finder, or increasing the diameter of the underflow orifice. Increasing feed-Solids content increases the specific gravity of separation and, therefore, washed coal yield and ash, which indicates the importance of maintaining a constant feed-solids content to preserve washed coal quality.
Capacity is influenced by cyclone geometry, i.e., the sizes of the overflow, underflow, and inlet openings, and by feed-solids content. The effects of these parameters is given in Table 7- 14.Increasing inlet pressure is a simple method of increasing capacity without changing hydro cyclone geometry, and washed yield and ash are not significantly affected. However, the penalty is increased pumping cost, and degradation of the coal.
Flow sheets
Soon after the hydro cyclone was developed, it became evident that performance was inferior to nearly all other cleaning devices. Consequently, in an effort to improve performance, three two stage circuits, shown in Fig. 7~64, were developed. In the earliest two-stage circuit, called two-stage relearn or TSR, the refuse from a primary hydro cyclone is simply relearned in a secondary hydro cyclone, The overflows from the two hydro cyclones are recombined as the washed coal product, and the underflows from the secondary hydro clone contains the final refuse. In more recent installations, one of the products from the secondary hydro cyclone is recirculated to the feed of the primary hydro cyclone. In the two-stage overflow recirculation circuit, TSOR, the primary or first-stage hydro cyclone is adjusted to produce an acceptable clean coal and the secondary hydro cyclone is adjusted to produce a refuse essentially free of misplaced coal. The overflow from the secondary hydro cyclone, which contains the misplaced coal in the underflows of the primary hydro cyclone, is returned to the feed of the primary hydro cyclone for reprocessing. In the two-stage underflow recirculation circuit, TSUR, and the overflow is relearned in the secondary hydro cyclone. The underflow from the secondary hydro clone is recalculated to the feed of the primary hydro cyclone. The overflow from the secondary hydro cyclone contains the washed coal.
Each of these circuits has advantages that depend upon the size and specific gravity compositions of the feed, as well as the required washed coal quality. The TSOR circuit is more effective in recovering washed coal whereas the TSUR circuit is more effective in rejecting heavy impurity. The TSR circuit is most effective when the specific gravity of separation of the two hydro cyclones is similar. Conversely, the performance of TSOR and TSUR is improved by diverging the specific gravity of separation of the two cyclones. At the present time, the TSOR is the most common circuit. A variation of the TSR circuit has been proposed whereby underflow from the primary cyclone is relearned on a concentrating table rather than a secondary hydro cyclone.
Some plants using jigs to clean the coarse coal utilize hydro cyclones to improve performance on the finer sizes. One method is to relearn the underflow of the washed coal screen, commonly the 1/4-in.material, with hydro cyclones. Another method is to screen the raw coal at about this size and clean the undersize with hydro cyclones.
Hydro cyclones have been used ahead of dense-medium cyclones to remove some of the low specific gravity coal and thereby reduce the amount of material sent to the dense-medium plant. The hydro cyclones are adjusted to separate at a specific gravity of about 1.35 to 1.40. The advantage is that the capacity of the dense-medium cyclone plant can be smaller, thus reducing capital and operating costs.
Hydro cyclone Performance
As mentioned previously, the quality of the washed coal and refuse products can be regulated by changing the diameters of the overflow and underflow orifices. However from a performance standpoint, a ratio of overflow diameter to underflow diameter in a range of about 1.7 to 2 gives the best results. Performance at lower ratios is inferior. Also, the solids content in the feed to primary and secondary hydro cyclones should range from 8 to 15 % (by weight). Outside this range, either above or below, performance is adversely affected.
Separations obtained in a single hydro cyclone and two-stage circuits (TSR) are shown by the distribution curves in Fig. 7-65. The sharpness of separation of the two-stage circuit is significantly superior to that of a single hydro cyclone. Also, the sharpness of separation of the two-stage circuit is not nearly as sharp as the separations characteristic of a dense-medium cyclone. It follows then that hydro cyclones are not applicable for difficult-to-clean coal or separations at low specific gravity unless followed by a more effective relearning process. Also, they are not suitable for friable coal or where the refuse particles are platy. Table 7-15 gives detailed performance data for two-stage (TSR) hydro cyclones. These data indicate that in general the specific gravity of separation increases and the sharpness of separation decreases with decreasing particle size.
Hydro cyclones may be especially applicable for cleaning -30-mesh (0.6- mm) coal if the coal is not amenable to flotation. However, the Majority of US coals are easily cleaned by flotation. But if the coal is not amenable to flotation because of a slime-coating problem or the coal is oxidized, then hydro cyclones may be a viable alternative. Also if fine pyrite is present in the feed, hydro cyclones are reported to be superior to flotation for lowering the sulfur content of the washed coal.
The coarser particles of an easy-to-clean coal with a top size of 1/4 or 3/8 in.(6.3 or 9.5 mm) can be cleaned about as efficiently in a two-stage hydro cyclone circuit as on a concentrating table, but not as efficiently as in a feldspar jig. However, the concentrating table cleans the finer particles much more efficiently than the hydro cyclone. The distribution curves for a two-stage hydro cyclone circuit (TSR) and a concentrating table cleaning a 1/4-in (6.3mm*0) feed are shown in Fig. 7-66. A major advantage of hydro cyclones is that the space requirement is much less than for concentrating tables and jigs, but much more power and water are required. Spiral concentrators are also used to clean-14-mesh (1.2-mm) coal.
A relatively new separator, called the air-spared hydro cyclone, has been developed and can be used to clean opal. It is essentially a porous cylinder without the usual conical section. Feed enters tangentially at the top and spirals downward. Air is introduced through the porous cylinder, and the air bubbles and flotation reagents along with the vortex effect the separation. Coal particles attach to the rising air bubbles and exit the top through a vortex.
選煤
表7-14,給出了影響入料分選密度和粒度的處理量。旋流器直徑為1/4-in.
表7-14
入料%
底流口
直徑,in
溢流口
直徑,in
入料口
直徑,in
處理量
t/h
10.2
0.75
1.50
1.23
1.8
9.8
1.75
3.00
1.23
2.9
9.8
1.75
3.00
3.00
4.5
17.3
1.75
3.00
3.00
8.9
改變旋流器溢流口和底流口的距離。例如,要降低分選精煤的灰分可以減小旋流器溢流口的距離,減小溢流管的長度,或者增大底流口的直徑。增大入料量會降低分選效率,因此,分選精煤的產(chǎn)率和灰分的關(guān)系表明了保證恒定的入料量才能保證洗選精煤的質(zhì)量。
處理量影響著旋流器的幾何尺寸,包括溢流口的尺寸,底流口的尺寸,入料口的尺寸和入料量。這些參數(shù)的影響如表7 – 14。改變?nèi)肓蠅毫κ且粋€(gè)改變旋流器參數(shù)的簡單方法,然而對改變精煤的產(chǎn)率和灰分的影響不顯著,況且會增加抽水成本,還會增加煤的泥化現(xiàn)象。
流程圖
隨著旋流器的發(fā)展,很明顯它毫不遜色于其他所有的洗選設(shè)備。因此,為了提高性能,兩段分選的旋流器(如圖7-64)被開發(fā)了出來。最早的兩段分選旋流器叫第二段再選或者叫TSR,從第一段旋流器出來的產(chǎn)品只是簡單的在第二段再選,從兩段旋流器溢流口出來的煤被混合當(dāng)作洗選精煤產(chǎn)品。從第二段旋流器底流出來的物料被視為洗選尾礦作為矸石。最近的有一種設(shè)備,一種從旋流器第二段出來的產(chǎn)品被循環(huán)作為第一段的入料。在兩段旋流器的溢流循環(huán),TSOR,這種從旋流器的第一段被作為調(diào)節(jié)產(chǎn)品所要求精煤,第二段作為調(diào)節(jié)尾礦中保證沒有錯(cuò)配物。從旋流器第二段的溢流出來的物料包含本該進(jìn)入到第二段旋流器底流的錯(cuò)配物,所以返回到第一段旋流器進(jìn)行再次循環(huán)洗選。在兩段旋流器底流循環(huán),TSUR,這種從第一段旋流器的底流出來的物料被作為最終的尾礦矸石,第二段的底流出來的物料再次進(jìn)入到第一段作為第一段的入料。從第二段溢流出來的產(chǎn)品被作為最終的洗選精煤產(chǎn)品。
上述的其中每個(gè)流程都有優(yōu)點(diǎn),取決于入料的粒度組成,和所要求的精煤產(chǎn)品質(zhì)量。TSOR流程能更有效地回收分選精煤,而TSUR流程更有效地排除重產(chǎn)物。當(dāng)兩段旋流器分選的比重類似時(shí)TSR流程是最有效的流程。相反,TSOR和TSU
的性能取決于兩段旋流器的分流量。在目前,TSOR是應(yīng)用的最為普遍的一種流程。有人提出一種改進(jìn)的TSR流程是從第一段主選底流出來的物料被再次分選濃縮代替第二段旋流器分選。
有一些廠用跳汰機(jī)分選塊煤,利用旋流器分選細(xì)粒的煤。一種方法是用煤用振動(dòng)篩篩分的篩下物(通常1/4英寸)的煤用旋流器分選,另一種方法是用煤用振動(dòng)篩篩分出粗粒煤,細(xì)粒度的煤用旋流器分選。
旋流器也被運(yùn)用到重介質(zhì)分選中去分選出一些含煤少的貧礦,以降低選煤廠重介質(zhì)的消耗。旋流器可以調(diào)節(jié)的分選密度大概在1.35~1.40之間。這樣的優(yōu)點(diǎn)是大大的降低了分選過程中所需重介質(zhì)的體積,節(jié)約了資金和運(yùn)營的成本。
水力旋流器性能
正如上文以前,對洗精煤產(chǎn)品質(zhì)量和垃圾,可通過改變調(diào)節(jié)溢出和下溢口的直徑。但是從性能的角度來看,溢流直徑到底流直徑的比例范圍為約1.7至2為最好,較低的比率性能為低劣產(chǎn)品。此外,在原料中固體物含量,一段和二段水力旋流器應(yīng)定為8至15%(重量)。此范圍以外,高于或低于,性能將產(chǎn)生不利影響。分離獲得的水力旋流器和一個(gè)兩階段的電路(TSR)是由圖所示的分布曲線,兩個(gè)階段的電路分離清晰度明顯優(yōu)于單一的水力旋流器,另外,這兩個(gè)階段的電路分離清晰度幾乎沒有像重介質(zhì)旋流器特點(diǎn)鮮明,由此得出結(jié)論,水力旋流器應(yīng)用于難以清潔煤或低比重的適用,除非更,有效的再分選過程。此外,他們沒有合適的煤或者易碎的煤矸石顆粒板狀。
表7-15給出了詳細(xì)的兩個(gè)階段(TSR)的水力旋流器的性能數(shù)據(jù)。這些數(shù)據(jù)表明,在一般的分離增加,分離小顆粒的清晰度的減少。水力旋流器可能會適合分選- 30目(0.6毫米)的煤,如果煤不浮選。然而,美國多數(shù)煤浮選煤很容易分選通過浮選。但是,如果煤炭,不受外界因?yàn)轲ね繉訂栴}浮選或煤被氧化,然后水力旋流器可能是一種可行的選擇。另外,如果細(xì)粒黃鐵礦是目前的原料,據(jù)報(bào)道水力旋流器,對于降低洗精煤的硫含量優(yōu)于浮選。一個(gè)易于清潔粗顆粒煤,有1 / 4或3 / 8英寸(6.3或9.5毫米大小的粗顆粒頂部)可以被兩階段水力旋流器有效地清理,作為一個(gè)選礦臺,但沒有有效的長石跳臺。但是,集中清理的細(xì)小顆粒表比水力旋流器更有效。如圖7-66.所示:
一種相對較新的名為空氣旋流器的分選設(shè)備被研制出來并可用于分選蛋白石。它本質(zhì)上是一個(gè)沒有通常錐形部分多孔圓筒。入料進(jìn)入切向頂部并螺旋下降,空氣是透過多孔圓筒,氣泡和浮選劑隨著漩渦影響分選。煤顆粒附著在氣泡上升到漩渦的頂部。
圖 7-56 旋流器典型分布圖
表7-15 旋流器的性能
尺寸,網(wǎng)目(mm)
3*200
(6.3*0.075)
3*200
(6.3*0.075)
3*200
(6.3*0.075)
3*200
(6.3*0.075)
30*200
(0.6*0.075)
30*200
(0.6*0.075)
篩分分析
原煤
93.9
94.8
91.0
95.4
84.4
86.6
精煤
92.2
94.3
88.1
93.1
80.7
85.7
矸石
97.4
97.9
97.8
97
97.5
84.0
灰分含量
原煤
17.5
16.1
29.8
17.9
21.1
16.1
精煤
7.0
10.3
13.1
8.7
9.6
11.8
矸石
50.3
51.4
64.8
64.4
55.4
65.1
洗選出精煤的產(chǎn)率
75.8
86.0
67.7
83.5
74.8
91.9
理論產(chǎn)率
84.7
90.8
75.5
88.2
82.5
93.8
分選效率
89.5
94.7
89.7
94.7
90.7
98.0
-1.30
93.1
97.1
94.5
96.9
96.0
99.2
1.30~1.40
86.0
94.6
88.8
95.5
89.4
98.4
1.40~1.50
68.4
81.2
75.6
88.8
75.8
94.8
1.50~1.60
47.4
56.4
61.8
83.7
59.7
89.5
1.60~1.70
25.1
37.4
40.3
71.9
53.0
79.6
1.70~1.80
13.7
29.8
32.5
62.4
36.9
72.5
+1.80
5.2
14.5
7.0
15.4
12.5
36.7
分選密度
1.54
1.58
1.61
1.88
1.62
1.96
錯(cuò)配率
78
105
120
123
118
-
可能性偏差
0.12
0.18
0.22
0.24
0.23
-
畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
題目 標(biāo)準(zhǔn)篩振篩機(jī)的總體及夾緊裝置的設(shè)計(jì)
一、選題的依據(jù)
碎礦、磨礦和選礦過程中所處理的固體物料,一般都是大小不一、形狀不同的松散狀礦料。而礦料的顆粒形狀又與物料的成分、理解、結(jié)構(gòu)等因素有關(guān),主要有塊狀、多棱狀、片狀、柱狀、纖維狀、擬球形以及一些不規(guī)則形狀。
隨著工業(yè)發(fā)展和技術(shù)的進(jìn)步,目前不少部門不僅對破碎產(chǎn)品粒度和過粉碎有要求,而且對顆粒的形狀也做了規(guī)定。例如:聯(lián)邦德國公路規(guī)程,規(guī)定了粒度為5-35毫米的石料粒度中,立方體顆粒海量不得低于80%。聯(lián)邦德國國家標(biāo)準(zhǔn)DIN52114對立方體定義還作了明文規(guī)定:所謂立方體,是指顆粒的三圍尺寸a、b、c(其中a>b>c)中,a/c的值不得大于3.其目的是為了保證公路鋪路石料的質(zhì)量。此外聯(lián)邦德國的建筑行業(yè)對于碎石的粒度和相撞也作了嚴(yán)格的規(guī)定,以保證混凝土的工程質(zhì)量。
所謂粒度,是礦塊(或礦粒)大小的量度,一般用毫米(或微米)表示。如果將松散狀礦料用某種方法分成若干級別,稱為粒級。例如,用稱量法稱出各種級別的重量并算出他們的重量百分比(或累計(jì)重量百分比),以說明某批礦料中各粒級顆粒含量多少,這種資料就叫做物料的粒度組成(或顆粒級配)。從粒度組成可以看出各級物料在原料或產(chǎn)品中的分布,這種確定粒度組成的實(shí)驗(yàn)和測定工作就叫做粒度分析。這項(xiàng)工作對于確定碎礦工藝流程、評價(jià)碎礦磨礦機(jī)械的技術(shù)經(jīng)濟(jì)效果和分析生產(chǎn)過程的產(chǎn)、質(zhì)量指標(biāo),都是必不可少的。
在碎礦磨礦生產(chǎn)實(shí)踐和科學(xué)研究中,為了說明含有各種粒級的混合物料的平均粒度的大小,以確定粉碎效率和評估粉碎機(jī)械的技術(shù)性能,往往要求算出某一批量物料顆粒群的平均粒度(或平均粒徑)。
根據(jù)無聊粗細(xì)不同,工程界和科研部門采用的分析方法之一就是篩分分析。利用篩孔大小不等的一系列篩子對物料進(jìn)行篩析,并將篩析結(jié)果整理在篩析結(jié)果記錄表上,然后根據(jù)所得數(shù)據(jù),做出物料的粒度曲線或粒度組成特性曲線。
篩析法的有點(diǎn)是設(shè)備簡單,操作方便。缺點(diǎn)是顆粒形狀的影響較大。
篩分分析是碎礦磨礦作業(yè)中一種最基本的粒度分析方法。
今年來,隨著選礦工業(yè)迅速發(fā)展,對篩分機(jī)械設(shè)備的篩分精度、篩分效率和單位處理能力的要求也越來越高,因此,篩分機(jī)械也有了很大進(jìn)展。例如,整機(jī)重量達(dá)30-40噸、震動(dòng)構(gòu)件重達(dá)25-30噸的篩分機(jī)械已經(jīng)相當(dāng)普遍。在處理塊狀物料時(shí),其處理能力已達(dá)1500噸/時(shí)。這給篩分作業(yè)帶來了新的生機(jī)。
標(biāo)準(zhǔn)篩是由一套篩孔大小有一定比例的篩子組成。上層篩子的篩孔大,下層篩子的篩孔小;另外有一個(gè)上蓋,防止式樣在篩析過程中外溢而損失,還有一個(gè)篩分底,可直接接收最底層篩子的篩下物。將標(biāo)準(zhǔn)篩按篩孔由大到小、自上而下的排列起來,各個(gè)篩子所處的層位次序叫篩序。在使用標(biāo)準(zhǔn)篩時(shí),決不可疊錯(cuò)篩序,否則會造成實(shí)驗(yàn)結(jié)果混亂。在疊好的篩序中,每兩個(gè)相鄰篩子的篩孔尺寸之比叫篩比。有些標(biāo)準(zhǔn)篩還有一個(gè)作為基準(zhǔn)的基篩。篩析實(shí)驗(yàn)的粒度范圍是0.037-200毫米。各國還制訂了一些標(biāo)準(zhǔn)篩。目前,在國內(nèi),選礦設(shè)備的種類有很多,機(jī)械式的占絕大多數(shù)。隨著選礦技術(shù)變得越來越成熟,新型的電磁振動(dòng)式振篩機(jī)現(xiàn)在也得到運(yùn)用。但不管對于實(shí)驗(yàn)室還是工地現(xiàn)場,機(jī)械式振篩機(jī)的運(yùn)用占據(jù)了主要位置。而標(biāo)準(zhǔn)篩振篩機(jī)憑借其優(yōu)良的工作性能和方便輕巧的優(yōu)點(diǎn)也深受用戶的喜愛,所以,對標(biāo)準(zhǔn)篩振篩機(jī)的研究與設(shè)計(jì)變得越來越重要。廣泛用于地質(zhì)、冶金、化工、煤炭、國防、科研、砂輪制造、水泥生產(chǎn)等部門化驗(yàn)室對物料進(jìn)行篩分分析。振擊次數(shù)穩(wěn)定可靠,裝夾套篩方便靈活,夾緊牢靠,并能自動(dòng)停車,根據(jù)用戶需要,可篩分多種特性的產(chǎn)品每次開機(jī)五分鐘,既方
便又簡單完成分級工作。
二、 國內(nèi)外研究概況及發(fā)展趨勢(含文獻(xiàn)綜述):
1、篩分機(jī)械的應(yīng)用現(xiàn)狀
基于振動(dòng)篩的三種不同的運(yùn)動(dòng)軌跡,采用不同的篩分方法,并針對國民經(jīng)濟(jì)中各行業(yè)的特殊需要。形成了各種形式的篩分機(jī)械,并使其在工業(yè)部門得到廣泛的應(yīng)用。在冶金工業(yè)部門,選礦廠普遍采用園振動(dòng)篩對礦石進(jìn)行預(yù)先篩分和檢查篩分;用振動(dòng)細(xì)篩對磨礦機(jī)的產(chǎn)品進(jìn)行分級以及提高精礦品位;針對燒結(jié)廠熱結(jié)礦和冷燒結(jié)礦分級的要求,采用直線運(yùn)動(dòng)軌跡和二次隔振原理,形成了熱礦篩和冷礦篩;另采用直線篩對焦炭進(jìn)行篩分,取代了原始的滾軸篩。
2、篩分機(jī)機(jī)械的發(fā)展方向
綜合國內(nèi)外機(jī)械發(fā)展現(xiàn)狀,篩分機(jī)械將向以下幾個(gè)方向發(fā)展。
2.1向大型化發(fā)展。工業(yè)的現(xiàn)代化進(jìn)程促使企業(yè)規(guī)模增大,生產(chǎn)能力大大提高。如從前我國選礦生產(chǎn)200-300萬T/A就是大型的,而現(xiàn)在出現(xiàn)1200萬T/A的選煤廠,這就需要大型篩分機(jī)與之配套,德國KHD公司生產(chǎn)的USK篩機(jī)已達(dá)到4500*6000MM,篩面達(dá)27.2M,德國的另一篩子技術(shù)公司生產(chǎn)的5500MM*11000MM的篩機(jī)達(dá)60.5M。
2.2向重型超重型篩發(fā)展。大的礦業(yè)工程需要處理大塊物料,法國蘇梅斯塔公司省柴的振動(dòng)棒可處理直徑達(dá)1M以上的大塊物料。
2.3向理想運(yùn)動(dòng)軌跡振動(dòng)篩發(fā)展。以提高各區(qū)段的篩分效率和整個(gè)篩機(jī)生產(chǎn)率為目標(biāo),尋找一種以理想運(yùn)動(dòng)方式為基礎(chǔ)的新型篩分機(jī)成為篩分設(shè)備發(fā)展的一個(gè)新方向。較為理想的篩面運(yùn)動(dòng)方式是:在垂直方向上,入料端的振幅大于出料端的振幅,延長度方向上,從入料端,物料運(yùn)動(dòng)速度遞減。在此理想情況下,可以創(chuàng)造良好的透篩環(huán)境。該理想篩機(jī)的篩分效果要優(yōu)于一般的篩分機(jī)械。
2.4向反共振振動(dòng)篩發(fā)展。以減輕整機(jī)重量、降低成本、提高試用壽命和可靠性為目標(biāo),提出新型的反共振振動(dòng)篩機(jī)。
2.5向標(biāo)準(zhǔn)化、系列化、通用化發(fā)展。
2.6應(yīng)用自同步技術(shù)。采用雙電機(jī)自同步技術(shù)以代替齒輪強(qiáng)迫同步,可簡化結(jié)構(gòu),降低噪音,從而簡化了機(jī)械潤滑、維護(hù)和檢修等經(jīng)常性工作,減少設(shè)備故障。
2.7振動(dòng)強(qiáng)度增大。篩機(jī)的振動(dòng)過程逐漸強(qiáng)化,以取得較大的速度和加速度,從而提高生產(chǎn)能力和篩分效果。
2.8向空間發(fā)展。針對細(xì)物料,先后出現(xiàn)了旋流振動(dòng)篩、錐形振動(dòng)篩、碟型振動(dòng)篩、旋轉(zhuǎn)概率篩等,既減少占地面積,又提高生產(chǎn)能力和篩分效率。
2.9向難篩分物料篩機(jī)發(fā)展。對于D<1MM、含水7%-14%的細(xì)濕物料的干篩以及水煤漿、垃圾處理等,篩分難度很大,德國海因勒曼公司生產(chǎn)的弛張篩,物料運(yùn)動(dòng)速度達(dá)1.3M/S,篩分效率達(dá)90%-95%。為解決難篩分物料篩分開創(chuàng)了先河。
三、 研究內(nèi)容及實(shí)驗(yàn)方案:
3.1 研究內(nèi)容
本次設(shè)計(jì)的主要任務(wù)主要是總體設(shè)計(jì)和夾緊機(jī)構(gòu)的設(shè)計(jì),所以主要著眼于總體結(jié)構(gòu)的布置和各個(gè)動(dòng)作的實(shí)現(xiàn)。所以要做好以下幾個(gè)方面的工作:
3.1.1 在電動(dòng)機(jī)的選擇上,在不影響整機(jī)裝配和機(jī)器工作性能的前提下,盡量選擇安裝尺寸比較小的電動(dòng)機(jī),從而能減少整機(jī)尺寸,有利于對振篩機(jī)結(jié)構(gòu)進(jìn)行小型化改造。
3.1.2 對關(guān)鍵部位,譬如偏心軸部分進(jìn)行重新選材并校核。且在整體的布置上盡量科學(xué)和優(yōu)化,使其體積盡量減小。并對受力比較明顯的部件的材料進(jìn)行重新審核,保證其能夠滿足強(qiáng)度要求。
3.1.3 對搖動(dòng)和振擊結(jié)構(gòu)的傳動(dòng)支撐部件(如軸承等)進(jìn)行良好的潤滑,有必要的時(shí)候,重新進(jìn)行潤滑方案的選擇。
3.2 實(shí)驗(yàn)方案
本機(jī)結(jié)構(gòu)主要由機(jī)座、篩與傳動(dòng)機(jī)構(gòu)等部分組成??膳鋫鋵S脢A具、即可裝夾Φ200 試驗(yàn)篩,又可裝Φ75、Φ100 套篩,裝夾方便靈活,夾緊牢靠,并能自動(dòng)停機(jī)。
3.2.1 整體結(jié)構(gòu)改造:可試圖將數(shù)值字顯示控制儀安裝在篩振機(jī)構(gòu)機(jī)械空洞部分,從而減少了整個(gè)篩振機(jī)的空間體積,并減輕了重量,增加了振篩機(jī)的美觀度,更好的符合實(shí)驗(yàn)室對振篩機(jī)小而精干的要求。
3.2.2 可對傳動(dòng)部件的靈活性與穩(wěn)定性方面做必要改進(jìn),減少不必要的磨損。
3.2.3 可通過重新選擇振篩機(jī)部件的材料,從而提高其使用壽命和性能。
四、 目標(biāo)、主要特色及工作進(jìn)度
4.1 目標(biāo)及主要特色
設(shè)計(jì)要求是用于實(shí)驗(yàn)室粒度篩分分析的Φ200mm 標(biāo)準(zhǔn)篩振篩機(jī),它是在XSZ—200和XSB—70A型基礎(chǔ)上改進(jìn)的。是與Φ200mm標(biāo)準(zhǔn)試驗(yàn)篩配套使用,對物料進(jìn)行分級篩分的專用設(shè)備.一般都是由機(jī)座、回轉(zhuǎn)機(jī)構(gòu)、振擊機(jī)構(gòu)、夾緊機(jī)構(gòu).套篩和減速裝置等組成 , 具有搖動(dòng)和振擊的復(fù)合篩分功能。
4.2 畢業(yè)設(shè)計(jì)(論文)的工作進(jìn)度
1.收集、查閱相關(guān)文獻(xiàn)資料,外文翻譯(6000實(shí)詞以上),撰寫開題報(bào)告: 2.28-3.25 4周
2.制定設(shè)備工作原理圖: 3.28-4.8 2周
3.標(biāo)準(zhǔn)篩振篩機(jī)的總體設(shè)計(jì): 4.11-4.22 2周
4.標(biāo)準(zhǔn)篩振篩機(jī)夾緊裝置的設(shè)計(jì): 4.25-5.6 2周
5.完成裝備圖及主要零件圖: 5.9-5.27 3周
6.撰寫畢業(yè)設(shè)計(jì)說明書: 5.30-6.24 4周
五、 參考文獻(xiàn)
[1]. 岑軍健,趙菊初. 非標(biāo)準(zhǔn)設(shè)備設(shè)計(jì)手冊( 第 4 冊)[M] . 北京: 國防工業(yè)出版社,1999
[2]. 沈 鴻,周建南. 機(jī)械工作手冊(第 10 卷) [M] . 北京: 機(jī)械工業(yè)出版社,1996
[3]. 廣西柳州探礦機(jī)械廠. XSB - 70B 型Φ200 mm 標(biāo)準(zhǔn)篩振篩機(jī)使用說明書[ R]
[4]. 廖念釗等主編. 互換性與技術(shù)測量. 北京:中國計(jì)量出版社,2000
[5]. Computer-aided diagnosis (CAD) and image-guided decision support Computerized
.Medical Imaging and Graphics 31 (2007)
[6]. 濮良貴,紀(jì)名剛. 機(jī)械設(shè)計(jì). 北京:高等教育出版社,2001
[7]. 劉鴻文. 材料力學(xué). 北京:高等教育出版社,2004
[8]. 徐敬. 機(jī)械設(shè)計(jì)手冊. 北京:機(jī)械工業(yè)出版社,2000
[9]. 王先逵. 機(jī)械制造工藝學(xué). 北京:機(jī)械工業(yè)出版社,2006
[10]. 卜炎. 機(jī)械傳動(dòng)裝置設(shè)計(jì)手冊. 北京:機(jī)械工業(yè)出版社,1999
[11]. 王昆等主編. 機(jī)械設(shè)計(jì)、機(jī)械設(shè)計(jì)基礎(chǔ)課程設(shè)計(jì). 北京:高等教育出版社,1996
[12]. 余夢生,吳宗澤. 機(jī)械零部件手冊. 北京:機(jī)械工業(yè)出版社,1996
[13].戴少生,繆中同,黃有豐.粉碎工程及設(shè)備
收藏