高考理科導(dǎo)學(xué)案【第三章】導(dǎo)數(shù)及其應(yīng)用 學(xué)案15
《高考理科導(dǎo)學(xué)案【第三章】導(dǎo)數(shù)及其應(yīng)用 學(xué)案15》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考理科導(dǎo)學(xué)案【第三章】導(dǎo)數(shù)及其應(yīng)用 學(xué)案15(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、▼▼▼2019屆高考數(shù)學(xué)復(fù)習(xí)資料▼▼▼ 學(xué)案15 導(dǎo)數(shù)的綜合應(yīng)用 導(dǎo)學(xué)目標(biāo): 1.應(yīng)用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,并會(huì)根據(jù)函數(shù)的性質(zhì)求參數(shù)范圍.2.會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問題. 自主梳理 1.函數(shù)的最值 (1)函數(shù)f(x)在[a,b]上必有最值的條件 如果函數(shù)y=f(x)的圖象在區(qū)間[a,b]上________,那么它必有最大值和最小值. (2)求函數(shù)y=f(x)在[a,b]上的最大值與最小值的步驟: ①求函數(shù)y=f(x)在(a,b)內(nèi)的________; ②將函數(shù)y=f(x)的各極值與________比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值. 2.實(shí)際應(yīng)用問題:首先
2、要充分理解題意,列出適當(dāng)?shù)暮瘮?shù)關(guān)系式,再利用導(dǎo)數(shù)求出該函數(shù)的最大值或最小值,最后回到實(shí)際問題中,得出最優(yōu)解.
自我檢測
1.函數(shù)f(x)=x3-3ax-a在(0,1)內(nèi)有最小值,則a的取值范圍為 ( )
A.0≤a<1 B.0
3、f(x),若滿足(x-1)f′(x)≥0,則必有 ( )
A.f(0)+f(2)<2f(1) B.f(0)+f(2)≤2f(1)
C.f(0)+f(2)≥2f(1) D.f(0)+f(2)>2f(1)
4.(2011·新鄉(xiāng)模擬)函數(shù)f(x)=ex (sin x+cos x)在區(qū)間上的值域?yàn)開_____________.
5.f(x)=x(x-c)2在x=2處有極大值,則常數(shù)c的值為________.
探究點(diǎn)一 求含參數(shù)的函數(shù)的最值
例1 已知函數(shù)f(x)=x2e-ax (a>0),求函數(shù)在[1,2]上的最大值.
4、變式遷移1 設(shè)a>0,函數(shù)f(x)=.
(1)討論f(x)的單調(diào)性;
(2)求f(x)在區(qū)間[a,2a]上的最小值.
探究點(diǎn)二 用導(dǎo)數(shù)證明不等式
例2 (2011·張家口模擬)已知f(x)=x2-aln x(a∈R),
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時(shí),x2+ln x 5、2011·孝感月考)某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交a元(3≤a≤5)的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(9≤x≤11)時(shí),一年的銷售量為(12-x)2萬件.
(1)求分公司一年的利潤L(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤L最大,并求出L的最大值Q(a).
變式遷移3 甲方是一農(nóng)場,乙方是一工廠.由于乙方生產(chǎn)需占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補(bǔ)經(jīng)濟(jì)損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤x(元)與年產(chǎn)量t(噸)滿足函數(shù)關(guān)系x=2 000.若乙方每 6、生產(chǎn)一噸產(chǎn)品必須賠付甲方S元(以下稱S為賠付價(jià)格).
(1)將乙方的年利潤ω(元)表示為年產(chǎn)量t(噸)的函數(shù),并求出乙方獲得最大利潤的年產(chǎn)量;
(2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額y=0.002t2(元),在乙方按照獲得最大利潤的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價(jià)格S是多少?
轉(zhuǎn)化與化歸思想的應(yīng)用
例 (12分)(2010·全國Ⅰ)已知函數(shù)f(x)=(x+1)ln x-x+1.
(1)若xf′(x)≤x2+ax+1,求a的取值范圍;
(2)證明:(x-1)f(x)≥0.
【答題模板】
(1)解 ∵f′(x)=+ln 7、 x-1=ln x+,x>0,
∴xf′(x)=xln x+1.由xf′(x)≤x2+ax+1,
得a≥ln x-x,令g(x)=ln x-x,則g′(x)=-1,[2分]
當(dāng)0 8、-x+1≤0,
∴(x-1)f(x)≥0.
當(dāng)x≥1時(shí),x-1>0,f(x)=(x+1)ln x-x+1
=ln x+xln x-x+1
=ln x-x≥0,
∴(x-1)f(x)≥0.[11分]
綜上,(x-1)f(x)≥0.[12分]
【突破思維障礙】
本小題主要考查函數(shù)、導(dǎo)數(shù)、不等式證明等知識(shí),通過運(yùn)用導(dǎo)數(shù)知識(shí)解決函數(shù)、不等式問題,考查了考生綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力以及計(jì)算能力,同時(shí)也考查了函數(shù)與方程思想、化歸與轉(zhuǎn)化思想.通過轉(zhuǎn)化,本題實(shí)質(zhì)還是利用單調(diào)性求最值問題.
1.求極值、最值時(shí),要求步驟規(guī)范,含參數(shù)時(shí),要分類討論參數(shù)的范圍.若已知函數(shù)單調(diào)性求參數(shù)范圍時(shí) 9、,隱含恒成立思想.
2.利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟:
(1)分析實(shí)際問題中各變量之間的關(guān)系,列出實(shí)際問題的數(shù)學(xué)模型,寫出相應(yīng)的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)求函數(shù)的導(dǎo)數(shù)f′(x),解方程f′(x)=0;
(3)比較函數(shù)的區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值和極值,確定最值;
(4)回到實(shí)際問題,作出解答.
(滿分:75分)
一、選擇題(每小題5分,共25分)
1.(2011·皖南模擬)已知曲線C:y=2x2-x3,點(diǎn)P(0,-4),直線l過點(diǎn)P且與曲線C相切于點(diǎn)Q,則點(diǎn)Q的橫坐標(biāo)為 10、 ( )
A.-1 B.1 C.-2 D.2
2.已知函數(shù)y=f(x),y=g(x)的導(dǎo)函數(shù)的圖象如圖所示,那么y=f(x),y=g(x)的圖象可能是 ( )
3.設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),y=f′(x)的圖象如圖所示,則y=f(x)的圖象最有可能是 ( )
11、
4.函數(shù)f(x)=-x3+x2+tx+t在(-1,1)上是增函數(shù),則t的取值范圍是 ( )
A.t>5 B.t<5
C.t≥5 D.t≤5
5.(2011·滄州模擬)若函數(shù)f(x)=,且0 12、每小題4分,共12分)
6.在直徑為d的圓木中,截取一個(gè)具有最大抗彎強(qiáng)度的長方體梁,則矩形面的長為________.(強(qiáng)度與bh2成正比,其中h為矩形的長,b為矩形的寬)
7.要建造一個(gè)長方體形狀的倉庫,其內(nèi)部的高為3 m,長和寬的和為20 m,則倉庫容積的最大值為_____________________________________________________________m3.
8.若函數(shù)f(x)=在區(qū)間(m,2m+1)上是單調(diào)遞增函數(shù),則實(shí)數(shù)m的取值范圍為________.
三、解答題(共38分)
9.(12分)已知函數(shù)f(x)=(1+x)2-ln(1+x).
(1 13、)求f(x)的單調(diào)區(qū)間;
(2)若x∈[-1,e-1]時(shí),f(x) 14、
11.(14分)設(shè)函數(shù)f(x)=ln x,g(x)=ax+,函數(shù)f(x)的圖象與x軸的交點(diǎn)也在函數(shù)g(x)的圖象上,且在此點(diǎn)有公共切線.
(1)求a、b的值;
(2)對(duì)任意x>0,試比較f(x)與g(x)的大?。?
答案 自主梳理
1.(1)連續(xù) (2)①極值?、诙它c(diǎn)值
自我檢測
1.B 2.D 3.C
4. 5.6
課堂活動(dòng)區(qū)
例1 解題導(dǎo)引 求函數(shù)在閉區(qū)間上的最值,首先應(yīng)判斷函數(shù)在閉區(qū)間上的單調(diào)性,一般方法是令f′(x)=0,求出x值后,再判斷函數(shù)在各區(qū)間上的單調(diào)性,在這里一般要用到分類討論的思想,討論的標(biāo)準(zhǔn)通常是極值點(diǎn)與區(qū)間端點(diǎn)的大
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 蛇年可用對(duì)聯(lián)總結(jié)
- 不斷錘煉本領(lǐng)做德才兼?zhèn)淝逭疂嵉男聲r(shí)代黨員干部專題黨課
- 公文寫作 “靈魂” 詞句
- 人生贈(zèng)言總結(jié)
- 中國臺(tái)灣省行政區(qū)劃
- 走進(jìn)《榜樣9》2025年基層黨支部黨建先進(jìn)人物先進(jìn)事跡學(xué)習(xí)
- 對(duì)聯(lián)總結(jié):通用春聯(lián)
- 贈(zèng)送給老師有關(guān)感謝的話
- 對(duì)聯(lián)總結(jié):寺院廟觀用的
- 名山勝水對(duì)聯(lián)總結(jié)
- 2025年XX地區(qū)基層黨支部“三會(huì)一課”計(jì)劃表
- 教學(xué)類:小學(xué)英語字母教學(xué)方法
- 影響高中生學(xué)習(xí)成績的24種原因及對(duì)策
- 春節(jié)可以用到到的對(duì)聯(lián)總結(jié)
- 鼓勵(lì)孩子的101句贊賞語