《新教材2021-2022學(xué)年人教A版選擇性必修第一冊(cè) - 傾斜角與斜率 學(xué)案.docx》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新教材2021-2022學(xué)年人教A版選擇性必修第一冊(cè) - 傾斜角與斜率 學(xué)案.docx(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第二章
DIERZHANG
直線(xiàn)和的方程
2.1直線(xiàn)的傾斜角與斜率
課前-自主探究
2.1.1傾斜角與斜率
內(nèi)容標(biāo)準(zhǔn)
學(xué)科素養(yǎng)
1. 在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線(xiàn)位置的兒何要素.
2. 理解直線(xiàn)的傾斜角和斜率的概念.
3. 經(jīng)歷用代數(shù)方法刻畫(huà)直線(xiàn)斜率的過(guò)程,掌握過(guò)兩點(diǎn)的直線(xiàn)斜率的計(jì)算公式.
4. 掌握傾斜角與斜率的對(duì)應(yīng)關(guān)系.
數(shù)學(xué)抽象直觀想象邏輯推理數(shù)學(xué)運(yùn)算
自主預(yù)習(xí)基礎(chǔ)認(rèn)知
授課提示:對(duì)應(yīng)學(xué)生用書(shū)第31頁(yè)[教材提煉]
知識(shí)點(diǎn)一直線(xiàn)的傾斜角
預(yù)習(xí)教材,思考問(wèn)題
如圖,在平面直角坐標(biāo)系中,過(guò)一點(diǎn)P(2,2)可以作出多少條
2、直線(xiàn)?這些直線(xiàn)區(qū)別在哪里
呢?如何表示這些直線(xiàn)的方向呢?
[提示]無(wú)數(shù)條.區(qū)別是它們的方向不同.這些直線(xiàn)相對(duì)于x軸的傾斛■程度不同,也就是它們與x軸所成的角不同.因此,我們可以利用這樣的角來(lái)表示這些直線(xiàn)的方向.
知識(shí)梳理
定義
當(dāng)直線(xiàn)/與x軸相交時(shí),取x軸作為基準(zhǔn),玉軸正向與直線(xiàn)/向上的方向之間所成的
角a叫做直線(xiàn)/的傾斜角
規(guī)定
當(dāng)直線(xiàn)/與x軸平行或重合時(shí),規(guī)定直線(xiàn)/的傾斜角為0。
記法
a
圖示
*
范圍
0°Wa<180。
作用
(1) 表示平面直角坐標(biāo)系內(nèi)一條直線(xiàn)的傾斜程度;
(2) 確定平面直角坐標(biāo)系中一條直線(xiàn)位置的兒何要素是:直線(xiàn)上的一個(gè)
3、定點(diǎn)以及它的傾斜角,二者缺一不可
知識(shí)點(diǎn)二直線(xiàn)的斜率
預(yù)習(xí)教材,思考問(wèn)題
我們知道:兩點(diǎn)確定一條直線(xiàn),進(jìn)而它的傾斜角也就確定了,那么任給直線(xiàn)/上兩點(diǎn)P|(M,>1),P2(X2,>2)(其中引正松),直線(xiàn)/的傾斜角a與R,P2兩點(diǎn)的坐標(biāo)有什么樣的內(nèi)在聯(lián)系呢?清用向量法探究下列問(wèn)題:
(1)己知直線(xiàn)/經(jīng)過(guò)0(0,0),01,1),a與(),P的坐標(biāo)有什么關(guān)系?
[提示]如圖,OP=(1J),由正切函數(shù)的定義,得tana=\.
(2)類(lèi)似地,如果直線(xiàn)/經(jīng)過(guò)R(l,。),必(一1,2),a與R,戶(hù)2的坐標(biāo)有什么關(guān)系?
[提示]如圖,汗2=(-2,2),平移舟2到矛,則點(diǎn)
4、P的坐標(biāo)為(-2,2),且直線(xiàn)OP的傾斜角也是a.由正切函數(shù)的定義,
傾斜角也是a.由正切函數(shù)的定義,
(3)—般地,如果直線(xiàn)/經(jīng)過(guò)兩點(diǎn)P|(X1,yi),P2S,J2),xi^x2f那么a與Pl,P2的坐
標(biāo)有怎樣的關(guān)系?
[提示]如圖,當(dāng)向量奇2的方向向上時(shí),P>2=(X2~X|,關(guān)一),1).平移奇2到泣,則V9—V1點(diǎn)P的坐標(biāo)為(X2—xi,關(guān)一y1),且直線(xiàn)0P的傾斜角也是由正切函數(shù)的定義,有tana=.
尤2X1
當(dāng)向量局|的方向向上時(shí),P^P}=(X}-X2t》一歸).平移呼|到則點(diǎn)P的坐標(biāo)為(由vi—
—X2,yi~y2),且直線(xiàn)OP的傾斜角也是a
5、.如圖,由正切函數(shù)的定義,也有tana=*=X\~X2
知識(shí)梳理⑴直線(xiàn)/的傾斜角?與直線(xiàn)I上的兩點(diǎn)P1(A1,V),P2(X2,),2)3*“)的坐標(biāo)有如下關(guān)系:tana=—丑.
X1~X\
(2)我們把-條直線(xiàn)的傾斜角。的正切值叫做這條直線(xiàn)的斜率.常用小寫(xiě)字母k表示,即k=tan_a.
(3)傾斜角和斜率分別從形和數(shù)兩個(gè)角度刻畫(huà)了直線(xiàn)相對(duì)于x軸的傾斜程度,它們的對(duì)應(yīng)關(guān)系:
圖示
-
*
%
傾斜角(范圍)
1=0。
0°0
不存在
kVQ
⑷若直線(xiàn)/的斜率為奴它的
6、一個(gè)方向向量的坐標(biāo)為(x,y),則k=l
[自主檢測(cè)]
1. 下圖中。能表示直線(xiàn)/的傾斜角的是()
A.①
B.①②
C.①③
D.②④
解析:結(jié)合直線(xiàn)/的傾斜角的概念可知①③可以,選C.
答案:c
2.(教材P55練習(xí)2改編)在直角坐標(biāo)系中,一條直線(xiàn)的斜率為寸,則此直線(xiàn)的傾斜角
A.30°
B.60°
C.120°
D.150°
解析:由題意得tana=S,又Aa=60°.
答案:B
3.(教材P55練習(xí)3改編)過(guò)點(diǎn)皿)、可(一皿,0)的直線(xiàn)的斜率是()
B.-1
答案:A
4. 若過(guò)A(4,y),BQ,一3)兩點(diǎn)的直線(xiàn)的傾斜角是45。,則y=.
7、—3—v解析:直線(xiàn)的傾斜角為45°,則其斜率為A=tan45°=I.由斜率公式,得2_4=】'解得),=-1.
答案:一1
5. 已知4(1,1),伙3,5),C(a,7),D(-l,b)四點(diǎn)在同一直線(xiàn)上,求直線(xiàn)的斜率及〃、b的值.
5—1
解析:由題意知,k,\B=3_]=2,由如c=W=2,
由如c=W=2,
解得a=4;
=2,解得b=-3,
=2,解得b=-3,
故直線(xiàn)的斜率為2,a=4,b=~3.
課堂-互動(dòng)探究
以例示法核心突碰
授課提示:對(duì)應(yīng)學(xué)生用書(shū)第32頁(yè)
探究一求直線(xiàn)的傾斜角
[例1](1)設(shè)直線(xiàn)/過(guò)原點(diǎn),其傾斜角為“,將直線(xiàn)/
8、繞坐標(biāo)原點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)45。得到直線(xiàn)4,則直線(xiàn)K的傾斜角為()
A. a+45。
B. 。一135。
C. \35°~a
D. 當(dāng)0。&<135。時(shí),傾斜角為a+45。,當(dāng)135°WaV180。時(shí),傾斜角為,一135。
(2)設(shè)直線(xiàn)A過(guò)原點(diǎn),其傾斜角a=15。,直線(xiàn)4與/2的交點(diǎn)為A,且匕與/2向上的方向之間所成的角為75。,則直線(xiàn)古的傾斜角為.
[分析]對(duì)于(1),由于a不確定,需分情況討論;對(duì)于(2),畫(huà)出圖象,利用圖象求解.
[解析](1)根據(jù)題意,畫(huà)出圖形,如圖所示:
因?yàn)?°^a<180°,顯然A,R,C未分類(lèi)討論,均不全面,不合題意.通過(guò)畫(huà)圖(如圖所示)可知
9、:
當(dāng)0°<135°,/1的傾斜角為a+45。;
當(dāng)135°WaV180°時(shí),4的傾斜角為45°+a-180°=a-135°.故選D.
(2)設(shè)直線(xiàn)的傾斜角為a,由圖可知,a=l5°+75°=90°,二直線(xiàn)也的傾斜南為90°.
[答案](1)D(2)90°方法提升?—
直線(xiàn)的傾斜角可以看作是由x軸繞著交點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)到與直線(xiàn)重合時(shí)所成的最小正角.所以求直線(xiàn)的傾斜角時(shí),往往借助于圖形.結(jié)合圖形求傾斜角時(shí),應(yīng)注意傾斜角的范圍以及平面幾何知識(shí)的應(yīng)用.
■同源異考■在觸類(lèi)旁通
1.已知直線(xiàn)/向上方向與y軸正向所成的角為30。,則直線(xiàn)/的傾斜角為.
解析:有如下兩種情況:
10、(2)如圖②,直線(xiàn)/向上方向與x軸正向所成的南為120°,即直線(xiàn)/的傾斜角為120°.答案:60?;?20°
探究二根據(jù)斜率公式求斜率
[例2]直線(xiàn)/過(guò)點(diǎn)P(l,0),且與以A(2,l),B(0,壽)為端點(diǎn)的線(xiàn)段有公共點(diǎn),則直線(xiàn)/斜率的取值范圍為.
[分析]結(jié)合圖形,根據(jù)直線(xiàn)斜率的變化情況,確定出其范圍.
]—0、萬(wàn)—0
[解析]如圖,,:kAP=._]=1,knp=0、_|=—a/3,
???虹(一8,]U[1,+8).
[答案|(一8,f]U[1,+8)
■變式訓(xùn)練培養(yǎng)應(yīng)變能力
1.若將本例⑵中P(l,0)改為p(—1,0),其他條件不變,求直線(xiàn)/斜率的取值范圍.
11、解析:..."(一1,0),A(2,l),3((),寸5),
.,1一°1,壽_0仄
??3>—2_(_1)_3,如尸_0_(_])_。3.
如圖可知,直線(xiàn)/斜率的取值范圍為<3.
2. 若將本例(2)中的"點(diǎn)坐標(biāo)改為(2,-1),其他條件不變,求直線(xiàn)/傾斜角。的取值范圍.
解析:如圖,直線(xiàn)欄的傾斜角為45。,直線(xiàn)PB的傾斜角為135。,
由圖象知/的傾斜角的范圍為
(a|0"Wc(W45'}U{?|135°<180°}.
—■??方法提升???當(dāng)已知兩定點(diǎn)坐標(biāo)求過(guò)這兩點(diǎn)的直線(xiàn)斜率時(shí),可直接利用斜率公式求解.應(yīng)用斜率公式時(shí),應(yīng)先判定兩定點(diǎn)的橫坐標(biāo)是否相等.若相等
12、,直線(xiàn)垂直于]軸,斜率不存在;若不相等,再代入斜率公式求解.
探究三斜率與傾斜角的應(yīng)用
[例3]己知某直線(xiàn)/的傾斜角。=45。,又-(2,),i),P2S2.5),P3(3,l)是此直線(xiàn)上的三點(diǎn),求X2,>1的值.
[分析]直線(xiàn)/的傾斜角已知可以求出其斜率且R、P2、P3均在直線(xiàn)/上,故任兩點(diǎn)的斜率均等于直線(xiàn)/的斜率,從而可以解出為,》的值.
[解析]Va=45°,..?直線(xiàn)/的斜率&=tan45°=1,
VPi,P2,P3都在直線(xiàn)/上,:?kPiPz=kPzP3=k.
斜率是反映直線(xiàn)相對(duì)于]軸正方向的傾斜程度的,直線(xiàn)上任意兩點(diǎn)所確定的方向不變,即在
同一直線(xiàn)上任意不同的兩點(diǎn)
13、所確定的斜率相等,這正是利用斜率可證三點(diǎn)共線(xiàn)的原因.
—同源異考重在觸類(lèi)旁通
2.如果三點(diǎn)4(2,1),B(-2,m),C(6,8)在同一條直線(xiàn)上,則〃?的值為
解析:知=與吉=宇,
1—tn7..?人、B、C三點(diǎn)共線(xiàn),.*睫=岫.即二j-=『.?,〃=一6.
答案:一6素養(yǎng)拓展能力提升
素養(yǎng)拓展能力提升
課后-素養(yǎng)培優(yōu)授課提示:對(duì)應(yīng)學(xué)生用書(shū)第34頁(yè)
、“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微”——數(shù)形結(jié)合思想在求斜率取值范圍中的應(yīng)院直觀想象、邏輯推理、數(shù)學(xué)抽象
I典例I]經(jīng)過(guò)點(diǎn)P(0,一2)作直線(xiàn)/,若直線(xiàn)與過(guò)4(一2,3),3(2,1)的線(xiàn)段總沒(méi)有公共點(diǎn),則直線(xiàn)/斜率的取值
14、范圍是.
[解析]設(shè)直線(xiàn)/的斜率為化直線(xiàn)AP的斜率為如,直線(xiàn)時(shí)的斜率為蜘,
當(dāng)直線(xiàn),/與線(xiàn)段AB有公共點(diǎn)時(shí),kWkAP或空而,3-2)-
-2O(-一
-2
1>\或
5-2
3-2)-
-2O(-一
-2
1>\或
5-2
3—(—2)
即當(dāng)直線(xiàn),/與線(xiàn)段有公共點(diǎn)時(shí),<_:_,、=53
所以當(dāng)直線(xiàn)/與線(xiàn)段沒(méi)有公共點(diǎn)時(shí),一
答案:加_|v炊|[
二、“歷史使人聰明,詩(shī)歌使人機(jī)智,數(shù)學(xué)使人精細(xì)”一分類(lèi)討論在求傾斜角取值范圍中的應(yīng)用
>數(shù)學(xué)運(yùn)算、直觀想象'邏輯推理
[典例2]求經(jīng)過(guò)A(鳳3),倒1,2)兩點(diǎn)的直線(xiàn)的斜率,并指出傾斜角。的取值范圍.
|解析]當(dāng),〃=1時(shí),直線(xiàn)的斜率不存在,此時(shí)直線(xiàn)的傾斜角a=90。.
當(dāng)時(shí),由斜率公式可得in~1in—I
① 當(dāng)m>\時(shí),A=—^>0,in—1
所以直線(xiàn)的傾斜角?的取值范圍是0。<。<90°.
② 當(dāng)ni<\時(shí),m~1
所以直線(xiàn)的傾斜角a的取值范圍是90°