新編高考數(shù)學(xué)理一輪資源庫(kù) 第3章學(xué)案15
《新編高考數(shù)學(xué)理一輪資源庫(kù) 第3章學(xué)案15》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)理一輪資源庫(kù) 第3章學(xué)案15(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料 學(xué)案15 導(dǎo)數(shù)的綜合應(yīng)用 導(dǎo)學(xué)目標(biāo): 1.應(yīng)用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,并會(huì)根據(jù)函數(shù)的性質(zhì)求參數(shù)范圍.2.會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題. 自主梳理 1.已知函數(shù)單調(diào)性求參數(shù)值范圍時(shí),實(shí)質(zhì)為恒成立問(wèn)題. 2.求函數(shù)單調(diào)區(qū)間,實(shí)質(zhì)為解不等式問(wèn)題,但解集一定為定義域的子集. 3.實(shí)際應(yīng)用問(wèn)題:首先要充分理解題意,列出適當(dāng)?shù)暮瘮?shù)關(guān)系式,再利用導(dǎo)數(shù)求出該函數(shù)的最大值或最小值,最后回到實(shí)際問(wèn)題中,得出最優(yōu)解. 自我檢測(cè) 1.函數(shù)f(x)=x3-3ax-a在(0,1)內(nèi)有最小值,則a的取值范圍為_(kāi)_______. 2.(2011·揚(yáng)州模擬)已知f(x),g(x)都是定義
2、在R上的函數(shù),g(x)≠0,f′(x)g(x)
3、ax (a>0),求函數(shù)在[1,2]上的最大值.
變式遷移1 設(shè)a>0,函數(shù)f(x)=.
(1)討論f(x)的單調(diào)性;
(2)求f(x)在區(qū)間[a,2a]上的最小值.
探究點(diǎn)二 用導(dǎo)數(shù)證明不等式
例2 已知f(x)=x2-aln x(a∈R),
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時(shí),x2+ln x
4、 探究點(diǎn)三 實(shí)際生活中的優(yōu)化問(wèn)題 例3 某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交a元(3≤a≤5)的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(9≤x≤11)時(shí),一年的銷售量為(12-x)2萬(wàn)件. (1)求分公司一年的利潤(rùn)L(萬(wàn)元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式; (2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤(rùn)L最大,并求出L的最大值Q(a). 變式遷移3 甲方是一農(nóng)場(chǎng),乙方是一工廠.由于乙方生產(chǎn)需占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補(bǔ)經(jīng)濟(jì)損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤(rùn)x(元)與年產(chǎn)量t(噸)滿足函數(shù)關(guān)系x
5、=2 000.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方S元(以下稱S為賠付價(jià)格). (1)將乙方的年利潤(rùn)ω(元)表示為年產(chǎn)量t(噸)的函數(shù),并求出乙方獲得最大利潤(rùn)的年產(chǎn)量; (2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額y=0.002t2(元),在乙方按照獲得最大利潤(rùn)的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價(jià)格S是多少? 轉(zhuǎn)化與化歸思想 例 (14分)(2010·全國(guó)Ⅰ)已知函數(shù)f(x)=(x+1)ln x-x+1. (1)若xf′(x)≤x2+ax+1,求a的取值范圍; (2)證明:(x-1)f(x)≥0. 【答題模板】 (1)解 ∵f′(
6、x)=+ln x-1=ln x+,x>0,[2分]
∴xf′(x)=xln x+1.由xf′(x)≤x2+ax+1,
得a≥ln x-x,令g(x)=ln x-x,則g′(x)=-1,[5分]
當(dāng)0 7、+ln x-x+1≤0,
∴(x-1)f(x)≥0.[12分]
當(dāng)x≥1時(shí),x-1>0,f(x)=(x+1)ln x-x+1=ln x+xln x-x+1
=ln x-x≥0,
∴(x-1)f(x)≥0.
綜上,(x-1)f(x)≥0.[14分]
【突破思維障礙】
本小題主要考查函數(shù)、導(dǎo)數(shù)、不等式證明等知識(shí),通過(guò)運(yùn)用導(dǎo)數(shù)知識(shí)解決函數(shù)、不等式問(wèn)題,考查了考生綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力以及計(jì)算能力,同時(shí)也考查了函數(shù)與方程思想、化歸與轉(zhuǎn)化思想.通過(guò)轉(zhuǎn)化,本題實(shí)質(zhì)還是利用單調(diào)性求最值問(wèn)題.
1.求極值、最值時(shí),要求步驟規(guī)范,含參數(shù)時(shí),要分類討論參數(shù)的范圍.若已知函數(shù)單調(diào)性求參數(shù) 8、范圍時(shí),隱含恒成立思想.
2.利用導(dǎo)數(shù)解決生活中的優(yōu)化問(wèn)題的一般步驟:
(1)分析實(shí)際問(wèn)題中各變量之間的關(guān)系,列出實(shí)際問(wèn)題的數(shù)學(xué)模型,寫(xiě)出相應(yīng)的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)求函數(shù)的導(dǎo)數(shù)f′(x),解方程f′(x)=0;
(3)比較函數(shù)的區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值和極值,確定最值;
(4)回到實(shí)際問(wèn)題,作出解答.
(滿分:90分)
一、填空題(每小題6分,共48分)
1.(2010·無(wú)錫模擬)已知曲線C:y=2x2-x3,點(diǎn)P(0,-4),直線l過(guò)點(diǎn)P且與曲線C相切于點(diǎn)Q,則點(diǎn)Q的橫坐標(biāo)為_(kāi)_______.
2.函數(shù)f(x)=x3+ax2+3x-9,已知f(x)在x=-3時(shí)取 9、得極值,則a=________.
3.(2011·鹽城調(diào)研)函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0,則a=f(0)、b=f()、c=f(3)的大小關(guān)系為_(kāi)_______________.
4.函數(shù)f(x)=-x3+x2+tx+t在(-1,1)上是增函數(shù),則t的取值范圍是________.
5.若函數(shù)f(x)=,且0 10、形的寬)
7.要建造一個(gè)長(zhǎng)方體形狀的倉(cāng)庫(kù),其內(nèi)部的高為3 m,長(zhǎng)和寬的和為20 m,則倉(cāng)庫(kù)容積的最大值為_(kāi)______________m3.
8.若函數(shù)f(x)=在區(qū)間(m,2m+1)上是單調(diào)遞增函數(shù),則實(shí)數(shù)m的取值范圍為_(kāi)_______.
二、解答題(共42分)
9.(12分)(2011·徐州模擬)設(shè)函數(shù)f(x)=kx3-3x2+1(k≥0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的極小值大于0,求k的取值范圍.
10.(14分)(2010·湖北)為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20 11、年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元,設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.
11.(16分)設(shè)函數(shù)f(x)=ln x,g(x)=ax+,函數(shù)f(x)的圖象與x軸的交點(diǎn)也在函數(shù)g(x)的圖象上,且在此點(diǎn)有公共切線.
(1)求a、b的值;
(2)對(duì)任意x>0,試比較f(x)與g(x)的大?。?
12、
答案 自我檢測(cè)
1.00),
∴f′(x)=2xe-ax+x2·(-a)e-ax
=e-ax(-ax2+2x).
令f′(x)>0,即e-ax(-ax2+2x)>0,
得0 13、
①當(dāng)0<<1,即a>2時(shí),f(x)在[1,2]上是減函數(shù),
∴f(x)max=f(1)=e-a.
②當(dāng)1≤≤2,即1≤a≤2時(shí),f(x)在上是增函數(shù),在上是減函數(shù),∴f(x)max=f=4a-2e-2.
③當(dāng)>2,即02時(shí),f(x)的最大值為e-a.
變式遷移1 解 (1)函數(shù)f(x)的定義域?yàn)?0,+∞),
f′(x)=a·(a>0),
由f′(x)=a·>0,得0 14、 15、增區(qū)間為(0,+∞).
若a>0時(shí),令f′(x)>0,得x>,
∴函數(shù)f(x)的單調(diào)增區(qū)間為(,+∞),減區(qū)間為(0,).
(2)證明 設(shè)F(x)=x3-(x2+ln x),
故F′(x)=2x2-x-.
∴F′(x)=.∵x>1,∴F′(x)>0.
∴F(x)在(1,+∞)上為增函數(shù).
又F(x)在(1,+∞)上連續(xù),F(xiàn)(1)=>0,
∴F(x)>在(1,+∞)上恒成立.
∴F(x)>0.
∴當(dāng)x>1時(shí),x2+ln x 16、化時(shí),
f′(x),f(x)的變化情況如下表:
x
(-∞,ln 2)
ln 2
(ln 2,+∞)
f′(x)
-
0
+
f(x)
極小值
故f(x)的單調(diào)遞減區(qū)間是(-∞,ln 2),
單調(diào)遞增區(qū)間是(ln 2,+∞),
f(x)在x=ln 2處取得極小值,極小值為f(ln 2)=eln 2-2ln 2+2a=2(1-ln 2+a).
(2)證明 設(shè)g(x)=ex-x2+2ax-1,x∈R.
于是g′(x)=ex-2x+2a,x∈R.
由(1)知當(dāng)a>ln 2-1時(shí),
g′(x)最小值為g′(ln 2)=2(1-ln 2+a)>0.
于是 17、對(duì)任意x∈R,都有g(shù)′(x)>0,
所以g(x)在R內(nèi)單調(diào)遞增,
于是當(dāng)a>ln 2-1時(shí),
對(duì)任意x∈(0,+∞),
都有g(shù)(x)>g(0).
而g(0)=0,從而對(duì)任意x∈(0,+∞),都有g(shù)(x)>0,
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.
例3 解 (1)分公司一年的利潤(rùn)L(萬(wàn)元)與售價(jià)x的函數(shù)關(guān)系式為L(zhǎng)=(x-3-a)(12-x)2,x∈[9,11].
(2)L′(x)=(12-x)2-2(x-3-a)(12-x)
=(12-x)(18+2a-3x).
令L′=0,得x=6+a或x=12(不合題意,舍去).
∵3≤a≤5,
∴8≤6+a 18、≤.
在x=6+a兩側(cè)L′的值由正變負(fù).
∴①當(dāng)8≤6+a<9,即3≤a<時(shí),
Lmax=L(9)=(9-3-a)(12-9)2=9(6-a).
②當(dāng)9≤6+a≤,即≤a≤5時(shí),
Lmax=L(6+a)=(6+a-3-a)[12-(6+a)]2
=4(3-a)3.
所以Q(a)=
綜上,若3≤a<,則當(dāng)每件售價(jià)為9元時(shí),分公司一年的利潤(rùn)L最大,最大值Q(a)=9(6-a)(萬(wàn)元);
若≤a≤5,則當(dāng)每件售價(jià)為(6+a)元時(shí),分公司一年的利潤(rùn)L最大,最大值Q(a)=4(3-a)3(萬(wàn)元).
變式遷移3 解 (1)因?yàn)橘r付價(jià)格為S元/噸,
所以乙方的實(shí)際年利潤(rùn)為ω=2 000 19、-St.
由ω′=-S=,
令ω′=0,得t=t0=()2.
當(dāng)t 20、4.t≥5
解析 ∵f(x)在(-1,1)上是增函數(shù),
f′(x)=-3x2+2x+t,
∴在(-1,1)上f′(x)≥0,
即-3x2+2x+t≥0,∴t≥3x2-2x.
設(shè)函數(shù)g(x)=3x2-2x,由于g(x)的圖象是對(duì)稱軸為x=,開(kāi)口向上的拋物線,故g(x) 21、(0,1)上是減函數(shù),得g(x) 22、′=-6x+60,
令V′=0得x=10.
當(dāng)0 23、不存在極小值.當(dāng)k>0時(shí),依題意f()=-+1>0,
即k2>4,由條件k>0,
∴k的取值范圍為(2,+∞).…………………………………………………………(12分)
10.解 (1)設(shè)隔熱層厚度為x cm,由題設(shè),
每年能源消耗費(fèi)用為C(x)=,……………………………………………………(2分)
再由C(0)=8,得k=40,
因此C(x)=,………………………………………………………………………(4分)
而建造費(fèi)用為C1(x)=6x.…………………………………………………………………(6分)
最后得隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和為
f(x)=20C(x)+C1(x 24、)=20×+6x
=+6x (0≤x≤10).………………………………………………………………(8分)
(2)f′(x)=6-,令f′(x)=0,
即=6,解得x=5,x=-(舍去).…………………………………………(10分)
當(dāng)0 25、),
依題意,得g(1)=a+b=0.①……………………………………………………………(2分)
又f′(x)=,g′(x)=a-,
且f(x)與g(x)在點(diǎn)(1,0)處有公共切線,
∴g′(1)=f′(1)=1,即a-b=1.②……………………………………………………(4分)
由①②得a=,b=-.…………………………………………………………………(6分)
(2)令F(x)=f(x)-g(x),則
F(x)=ln x-(x-)=ln x-x+,
∴F′(x)=--……………………………………………………………………(8分)
=-(-1)2≤0.
∴F(x)在(0,+∞)上為減函數(shù).………………………………………………………(10分)
當(dāng)0
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 領(lǐng)導(dǎo)班子2024年度民主生活會(huì)對(duì)照檢查材料范文(三篇)
- 金融工作主題黨課講稿范文(匯編)
- 鍋爐必備學(xué)習(xí)材料
- 鍋爐設(shè)備的檢修
- 主題黨課講稿:走中國(guó)特色金融發(fā)展之路加快建設(shè)金融強(qiáng)國(guó)(范文)
- 鍋爐基礎(chǔ)知識(shí):?jiǎn)t注意事項(xiàng)技術(shù)問(wèn)答題
- 領(lǐng)導(dǎo)班子2024年度民主生活會(huì)“四個(gè)帶頭”對(duì)照檢查材料范文(三篇)
- 正常運(yùn)行時(shí)影響鍋爐汽溫的因素和調(diào)整方法
- 3.鍋爐檢修模擬考試復(fù)習(xí)題含答案
- 司爐作業(yè)人員模擬考試試卷含答案-2
- 3.鍋爐閥門(mén)模擬考試復(fù)習(xí)題含答案
- 某公司鍋爐安全檢查表
- 3.工業(yè)鍋爐司爐模擬考試題庫(kù)試卷含答案
- 4.司爐工考試題含答案解析
- 發(fā)電廠鍋爐的運(yùn)行監(jiān)視和調(diào)整