《人教版九年級數(shù)學上冊教案:21_1 一元二次方程(1)》由會員分享,可在線閱讀,更多相關《人教版九年級數(shù)學上冊教案:21_1 一元二次方程(1)(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第二十一章 一元二次方程
單元要點分析
教材內(nèi)容
1.本單元教學的主要內(nèi)容.
一元二次方程概念;解一元二次方程的方法;一元二次方程應用題.
2.本單元在教材中的地位與作用.
一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,它也是一種數(shù)學建模的方法.學好一元二次方程是學好二次函數(shù)不可或缺的,是學好高中數(shù)學的奠基工程.應該說,一元二次方程是本書的重點內(nèi)容.
教學目標
1.知識與技能
了解一元二次方程及有關概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌
2、握依據(jù)實際問題建立一元二次方程的數(shù)學模型的方法;應用熟練掌握以上知識解決問題.
2.過程與方法
(1)通過豐富的實例,讓學生合作探討,老師點評分析,建立數(shù)學模型.根據(jù)數(shù)學模型恰如其分地給出一元二次方程的概念.
(2)結合八冊上整式中的有關概念介紹一元二次方程的派生概念,如二次項等.
(3)通過掌握缺一次項的一元二次方程的解法──直接開方法,導入用配方法解一元二次方程,又通過大量的練習鞏固配方法解一元二次方程.
(4)通過用已學的配方法解ax2+bx+c=0(a≠0)導出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2
3、-4ac=0,b2-4ac<0.
(5)通過復習八年級上冊《整式》的第5節(jié)因式分解進行知識遷移,解決用因式分解法解一元二次方程,并用練習鞏固它.
(6)提出問題、分析問題,建立一元二次方程的數(shù)學模型,并用該模型解決實際問題.
3.情感、態(tài)度與價值觀
經(jīng)歷由事實問題中抽象出一元二次方程等有關概念的過程,使同學們體會到通過一元二次方程也是刻畫現(xiàn)實世界中的數(shù)量關系的一個有效數(shù)學模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學們體會到轉化等數(shù)學思想;經(jīng)歷設置豐富的問題情景,使學生體會到建立數(shù)學模型解決實際問題的過程,從而更好地理解方程的意義和
4、作用,激發(fā)學生的學習興趣.
教學重點
1.一元二次方程及其它有關的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.
3.利用實際問題建立一元二次方程的數(shù)學模型,并解決這個問題.
教學難點
1.一元二次方程配方法解題.
2.用公式法解一元二次方程時的討論.
3.建立一元二次方程實際問題的數(shù)學模型;方程解與實際問題解的區(qū)別.
教學關鍵
1.分析實際問題如何建立一元二次方程的數(shù)學模型.
2.用配方法解一元二次方程的步驟.
3.解一元二次方程公式法的推導.
5、課時劃分
本單元教學時間約需16課時,具體分配如下:
21.1 一元二次方程 2課時
21.2 降次──解一元二次方程 7課時
21.3 實際問題與一元二次方程 4課時
教學活動、習題課、小結 3課時
21.1 一元二次方程
第一課時
教學內(nèi)容
一元二次方程概念及一元二次方程一般式及有關概念.
教學目標
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.
1.
6、通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關概念.
3.解決一些概念性的題目.
4.態(tài)度、情感、價值觀
4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.
重難點關鍵
1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.
2.難點關鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.
教學過程
一、復習引入
學生活動:列方程.
7、問題(1)《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?
如果假設門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
整理、化簡,得:__________.
問題(2)如圖,如果,那么點C叫做線段AB的黃金分割點.
如果假設AB=1,AC=x,那么BC=________,根據(jù)題意,得:________.
整理得:_________.
問題(3)有一面積為
8、54m2的長方形,將它的一邊剪短5m,另一邊剪短2m,恰好變成一個正方形,那么這個正方形的邊長是多少?
如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.
二、探索新知
學生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師點評:(1)都只含
9、一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項
10、系數(shù)、一次項系數(shù)及常數(shù)項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.
解:去括號,得:
40-16x-10x+4x2=18
移項,得:4x2-26x+22=0
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.
例2.(學生活動:請二至三位同學上臺演練) 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
分析:通過完全平方公
11、式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括號,得:
x2+2x+1+x2-4=1
移項,合并得:2x2+2x-4=0
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.
三、鞏固練習
教材練習1、2
四、應用拓展
例3.求證:關于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.
證明:
12、m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不論m取何值,該方程都是一元二次方程.
五、歸納小結(學生總結,老師點評)
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.
六、布置作業(yè)
1.教材習題22.1 1、2.
2.選用作業(yè)設計.
作業(yè)設計
一、選擇題
1.在下列方程中,一元二次方程
13、的個數(shù)是( ).
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-=0
A.1個 B.2個 C.3個 D.4個
2.方程2x2=3(x-6)化為一般形式后二次項系數(shù)、一次項系數(shù)和常數(shù)項分別為( ).
A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是關于x的一元二次方程,則( ).
A.p=1 B.p>0 C.p≠0 D.p為任意實數(shù)
14、 二、填空題
1.方程3x2-3=2x+1的二次項系數(shù)為________,一次項系數(shù)為_________,常數(shù)項為_________.
2.一元二次方程的一般形式是__________.
3.關于x的方程(a-1)x2+3x=0是一元二次方程,則a的取值范圍是________.
三、綜合提高題
1.a(chǎn)滿足什么條件時,關于x的方程a(x2+x)=x-(x+1)是一元二次方程?
2.關于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程嗎?為什么?
3.一塊矩形鐵片,面積為1m
15、2,長比寬多3m,求鐵片的長,小明在做這道題時,是這樣做的:
設鐵片的長為x,列出的方程為x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道鐵片的長到底是多少,下面是他的探索過程:
第一步:
x
1
2
3
4
x2-3x-1
-3
-3
所以,________