數(shù)學(xué)物理方法 課件教案

上傳人:文*** 文檔編號:53703829 上傳時間:2022-02-10 格式:PPT 頁數(shù):16 大?。?78KB
收藏 版權(quán)申訴 舉報 下載
數(shù)學(xué)物理方法 課件教案_第1頁
第1頁 / 共16頁
數(shù)學(xué)物理方法 課件教案_第2頁
第2頁 / 共16頁
數(shù)學(xué)物理方法 課件教案_第3頁
第3頁 / 共16頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《數(shù)學(xué)物理方法 課件教案》由會員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)物理方法 課件教案(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、數(shù)學(xué)物理方法數(shù)學(xué)物理方法 課程的內(nèi)容課程的內(nèi)容三種方程、 四種求解方法、 二個特殊函數(shù)分離變量法、行波法、積分變換法、格林函數(shù)法波動方程、熱傳導(dǎo)、拉普拉斯方程貝賽爾函數(shù)、勒讓德函數(shù) 數(shù)學(xué)物理方程定義數(shù)學(xué)物理方程定義描述某種物理現(xiàn)象的數(shù)學(xué)微分方程。一、一、 基本方程的建立基本方程的建立第一章第一章 數(shù)學(xué)物理方程的一些數(shù)學(xué)物理方程的一些基本知識基本知識二、二、 定解條件的推導(dǎo)定解條件的推導(dǎo)三、三、 定解問題的概念定解問題的概念一、一、 基本方程的建立基本方程的建立條件:均勻柔軟的細(xì)弦,在平衡位置附近產(chǎn)生振幅極小的 橫振動。不受外力影響。例例1、弦的振動、弦的振動研究對象:線上某點在 t 時刻沿縱向

2、的位移。( , )u x t簡化假設(shè):(2)振幅極小, 張力與水平方向的夾角很小。(1)弦是柔軟的,弦上的任意一點的張力沿弦的切線方向。cos1cos1 gds M M ds x T y xdx x T 牛頓運動定律:sinsinTTgdsma橫向:coscosTT縱向:( , )sintan(d , )sintanu x txu xx tx其中:TT(d , )( , )u xx tu x tTgdsmaxx22(d , )( , )( , )ddu xx tu x tu x tTg xxxxt其中:ddsx22( , )mdsu x tat22(d , )( , )( , )( , )dd

3、u xx tu x tu x tu x txxxxxxx2222( , )( , )ddux tu x tTgxxxt其中:2222( , )( , )ddux tu x tTgxxxt2222( , )( , )Tux tu x tgxt22222uuagtx一維波動方程2Ta 令:-非齊次方程非齊次方程自由項22222uuatx-齊次方程齊次方程忽略重力作用:例例2 2、熱傳導(dǎo)、熱傳導(dǎo)所要研究的物理量:溫度 ),(tzyxu根據(jù)熱學(xué)中的傅立葉試驗定律在dt時間內(nèi)從dS流入V的熱量為:從時刻t1到t2通過S流入V的熱量為 tSukQttSdd211 高斯公式(矢量散度的體積分等于該矢量的沿著

4、該體積的面積分) tVukQttVdd2121 tSnukQdddtSnukddtSukdd熱傳導(dǎo)現(xiàn)象:當(dāng)導(dǎo)熱介質(zhì)中各點的溫度分布不均勻時,有熱量從高溫處流向低溫處。熱場MSSVntVukQttVdd2121 ),(1tzyxu),(2tzyxuVtzyxutzyxucQVd),(),(12221QQ 流入的熱量導(dǎo)致V內(nèi)的溫度發(fā)生變化 2121dddd2ttVttVtVtuctVuktucuk22ukutc02 ufuatu22流入的熱量:溫度發(fā)生變化需要的熱量為:VttucVttdd21 21ddttVtVtuc22au熱傳導(dǎo)方程熱場MSSVn同一類物理現(xiàn)象中,各個具體問題又各有其特殊性。邊

5、界條件和初始條件反映了具體問題的特殊環(huán)境和歷史,即個性。初始條件:能夠用來說明某一具體物理現(xiàn)象初始狀態(tài)的條件。邊界條件:能夠用來說明某一具體物理現(xiàn)象邊界上的約束情況的條件。二、定解條件的推導(dǎo)二、定解條件的推導(dǎo)其他條件:能夠用來說明某一具體物理現(xiàn)象情況的條件。初始時刻的溫度分布:B、熱傳導(dǎo)方程的初始條件0(, )|()tu M tMC、泊松方程和拉普拉斯方程的初始條件不含初始條件,只含邊界條件條件A、 波動方程的初始條件00|( )( )ttuxuxt1、初始條件、初始條件描述系統(tǒng)的初始狀態(tài)描述系統(tǒng)的初始狀態(tài)系統(tǒng)各點的初位移系統(tǒng)各點的初速度(2)自由端:x=a 端既不固定,又不受位移方向力的作用

6、。2、邊界條件、邊界條件描述系統(tǒng)在邊界上的狀況描述系統(tǒng)在邊界上的狀況A、 波動方程的邊界條件(1)固定端:對于兩端固定的弦的橫振動,其為:0|0,xu( , )0u a t 或:0 x auTx0 x aux( , )0 xu a t (3) 彈性支承端:在x=a端受到彈性系數(shù)為k 的彈簧的支承。x ax auTkux 或0 x auuxB、熱傳導(dǎo)方程的邊界條件(1) 給定溫度在邊界上的值|sufS給定區(qū)域v 的邊界(2) 絕熱狀態(tài)0sun(3)熱交換狀態(tài)牛頓冷卻定律:單位時間內(nèi)從物體通過邊界上單位面積流到周圍介質(zhì)的熱量跟物體表面和外面的溫差成正比。11()d dd dudQk uuS tkS

7、 tn 交換系數(shù); 周圍介質(zhì)的溫度1k1u1SSuuun1kk第一類邊界條件第二類邊界條件第三類邊界條件1 1、定解問題、定解問題三、定解問題的概念三、定解問題的概念(1) 初始問題:只有初始條件,沒有邊界條件的定解問題;(2) 邊值問題:沒有初始條件,只有邊界條件的定解問題;(3) 混合問題:既有初始條件,也有邊界條件的定解問題。 把某種物理現(xiàn)象滿足的偏微分方程和其相應(yīng)的定解條件結(jié)合在一起,就構(gòu)成了一個定解問題。定解問題的檢驗定解問題的檢驗 解的存在性:定解問題是否有解;解的唯一性:是否只有一解;解的穩(wěn)定性:定解條件有微小變動時,解是否有相應(yīng) 的微小變動。3 3、線性偏微分方程的分類、線性偏

8、微分方程的分類 按未知函數(shù)及其導(dǎo)數(shù)的系數(shù)是否變化分為常系數(shù)和變系數(shù)微分方程 按自由項是否為零分為齊次方程和非齊次方程2 2、微分方程一般分類、微分方程一般分類 (1) 按自變量的個數(shù),分為二元和多元方程;(2) 按未知函數(shù)及其導(dǎo)數(shù)的冪次,分為線性微分方程和 非線性微分方程;(3) 按方程中未知函數(shù)導(dǎo)數(shù)的最高階數(shù),分為一階、二階 和高階微分方程。線性方程的解具有疊加特性 iifLu ffiuuifLu 0iLuuui0Lu4 4、疊加原理、疊加原理 幾種不同的原因的綜合所產(chǎn)生的效果等于這些不同原因單獨產(chǎn)生的效果的累加。(物理上)xxuatu2222222222uuauxt222uuaxuxt222110uu判斷下列方程的類型思考5 5、微分方程的解、微分方程的解 古典解:如果將某個函數(shù) u 代入偏微分方程中,能使方程成為恒等式,則這個函數(shù)就是該偏微分方程的解。通解: 解中含有相互獨立的和偏微分方程階數(shù)相同的任意常數(shù)的解。 特解: 通過定解條件確定了解中的任意常數(shù)后得到的解。 形式解:未經(jīng)過驗證的解為形式解。 6 6、求解方法、求解方法分離變量法、行波法、積分變換法、格林函數(shù)法

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!