高一數(shù)學《第一講 函數(shù)》課件

上傳人:無*** 文檔編號:51286281 上傳時間:2022-01-25 格式:PPT 頁數(shù):28 大?。?.50MB
收藏 版權申訴 舉報 下載
高一數(shù)學《第一講 函數(shù)》課件_第1頁
第1頁 / 共28頁
高一數(shù)學《第一講 函數(shù)》課件_第2頁
第2頁 / 共28頁
高一數(shù)學《第一講 函數(shù)》課件_第3頁
第3頁 / 共28頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高一數(shù)學《第一講 函數(shù)》課件》由會員分享,可在線閱讀,更多相關《高一數(shù)學《第一講 函數(shù)》課件(28頁珍藏版)》請在裝配圖網上搜索。

1、 第一講第一講 函數(shù)函數(shù)函數(shù)的高考要求函數(shù)的高考要求:2 2掌握函數(shù)關系的建立,在此基礎上理解函數(shù)及其有關概念,掌握互為反函掌握函數(shù)關系的建立,在此基礎上理解函數(shù)及其有關概念,掌握互為反函 數(shù)的函數(shù)圖象間的關系數(shù)的函數(shù)圖象間的關系3 3理解和掌握函數(shù)的單調性、奇偶性、周期性、函數(shù)的最大值、最小值的概念,理解和掌握函數(shù)的單調性、奇偶性、周期性、函數(shù)的最大值、最小值的概念, 并能判定簡單函數(shù)的這些性質,能利用函數(shù)的奇偶性、周期性與圖象的對稱性并能判定簡單函數(shù)的這些性質,能利用函數(shù)的奇偶性、周期性與圖象的對稱性 的關系描繪函數(shù)的圖象的關系描繪函數(shù)的圖象4 4掌握冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的概念、圖象

2、與性質,并會解簡單的指數(shù)方掌握冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的概念、圖象與性質,并會解簡單的指數(shù)方 程和對數(shù)方程程和對數(shù)方程5 5掌握二次函數(shù)、一元二次方程和一元二次不等式三者之間的關系,并能綜合解掌握二次函數(shù)、一元二次方程和一元二次不等式三者之間的關系,并能綜合解 決相關問題決相關問題1 1理解和掌握集合、子集、交集、并集、補集、命題的四種形式與等價理解和掌握集合、子集、交集、并集、補集、命題的四種形式與等價 命題、充要條件等概念,能掌握集合與命題的有關述語和符號,以集命題、充要條件等概念,能掌握集合與命題的有關述語和符號,以集 合語言和集合思想為工具,能正確的表示函數(shù)的定義域、值域、方程合語言

3、和集合思想為工具,能正確的表示函數(shù)的定義域、值域、方程 與不等式的解集、曲線的軌跡方程及其交點等問題與不等式的解集、曲線的軌跡方程及其交點等問題 一、函數(shù)的概念及性質一、函數(shù)的概念及性質例例1已知函數(shù)已知函數(shù)y = f(x) (定義域為定義域為D,值域為,值域為A)有反函數(shù))有反函數(shù)y= f -1-1(x), 則方程則方程 f(x)=0有解有解x=a,且,且f(x)x(xD)的充要條件是)的充要條件是y= f - -1(x) 滿足滿足 答:函數(shù)答:函數(shù)f - -1(x)的圖象在直線的圖象在直線y= x的下方且過點(的下方且過點(0,a) 例例2設函數(shù)設函數(shù)f(x)= sin2x,若,若f(x+

4、t)是偶函數(shù),則是偶函數(shù),則t的一個可能值是的一個可能值是 答:答:t的一個可能值是,的一個可能值是,kZ 41k2 分析分析:24或或: f - -1(0)=a 且且f - -1(x) x( x )f(x+t)=sin2(x+t)sin2(x+ ) =sin(2x+ )=cos2x , ,sin2(x+ ) =sin(2x+ )= - -cos2x ,4323 例例3. 已知函數(shù)已知函數(shù)f(x)= x2- -2ax- -b (xR),給出下列命題:),給出下列命題:f(x)必是偶函數(shù);必是偶函數(shù);當當f(0)=f(2)時,時,f(x)的圖象必關于直線的圖象必關于直線x=1對稱;對稱;若若a2

5、+b0,則,則f(x)在區(qū)間在區(qū)間 a,+ 上是增函數(shù);上是增函數(shù);f(x)有最大值有最大值 a2+b 其中正確命題的序號是其中正確命題的序號是 分析:分析: 當當a0時,時,xR,f(x)是非奇非偶函數(shù)是非奇非偶函數(shù) 由由f(0)=f(2)得得 - -b = 4- -4a- -b ,此時,此時,a=1或或a=1- - b, 212對后者,當對后者,當b0時,其圖象不關于直線時,其圖象不關于直線x=1對稱對稱 若若a2+b0,則,則 = 4(a2+b)0,f(x)=x2- -2ax- -b =(x- -a)- -a2- -b , 可知:命題可知:命題是正確是正確 雖然當雖然當x=a時,時,(x

6、- -a)- -a2- -b有最小值有最小值- -a2- -b, 2但不能確定但不能確定f(x) x2- -2ax- -b (xR)有最大值)有最大值 a2+b , 因此正確命題的序號應為因此正確命題的序號應為 例例4已知函數(shù)已知函數(shù)y=f(x)是定義在是定義在R上的周期函數(shù),周期上的周期函數(shù),周期T=5 ,函數(shù),函數(shù) y = f(x) (- -1x1)是奇函數(shù)又知)是奇函數(shù)又知y=f(x)在在0,1上是一次函數(shù),在上是一次函數(shù),在1,4上上 是二次函數(shù),且在是二次函數(shù),且在x=2時函數(shù)取得最小值時函數(shù)取得最小值- -5 ()證明:)證明:f(1)+ f(4)= 0; ()試求)試求y=f(x

7、)分別在分別在1,4、4,9上的解析式上的解析式分析(分析()函數(shù)函數(shù)y=f(x)是以是以5為周期的周期函數(shù),且在為周期的周期函數(shù),且在x- -1,1上是奇函數(shù),上是奇函數(shù), f(4)= 從而從而 f(1)+ f(4)= 0 ()當)當x1,4時,由題意可設:時,由題意可設:f(x)= a(x- -2)- -5 (a0),),由由f(1)+ f(4)= 0得得 f(x)= 2(x- -2)- -5 (1x4) f(x)在在x- -1,1上是奇函數(shù),上是奇函數(shù),222a(1- -2)- -5+ a(4- -2)- -5 = 0,解得解得a=2 ,2f(4- -5)= f(- -1)= - - f

8、(1), 當當x - -1,0)時,時, 又又f(1)= k1= k, k= - -3, f(0)= - - f(0),f(0)= 0又又y=f(x)在在x0,1上是一次函數(shù)上是一次函數(shù), 可設可設f(x)= kx,x0,1, f(1)=2(1- -2) - -5= - -3, 當當x0,1時,時,f(x)= - -3x 2 當當x4,6時,時, 當當x- -1,1時,時,f(x)= - -3x 當當x(6,9時,時,x- -5(1,4 , x- -5- -1,1, f(x)= f(x- -5)= - -3(x- -5)= - -3x+15f(x)= f(x- -5)= 2(x- -5)- -

9、2 - - 5 = 2(x- -7) - - 5 22 f(x)= - -3x+15 , x4,62( (x- -7)- - 5 , x(6,920- -x1,f(x)= - - f(- -x)= - -3x,例例4已知函數(shù)已知函數(shù)y=f(x)是定義在是定義在R上的周期函數(shù),周期上的周期函數(shù),周期T=5 ,函數(shù),函數(shù) y = f(x) (- -1x1)是奇函數(shù)又知)是奇函數(shù)又知y=f(x)在在0,1上是一次函數(shù),在上是一次函數(shù),在1,4上上 是二次函數(shù),且在是二次函數(shù),且在x=2時函數(shù)取得最小值時函數(shù)取得最小值- -5 ()證明:)證明:f(1)+ f(4)= 0; ()試求)試求y=f(x)

10、分別在分別在1,4、4,9上的解析式上的解析式回顧回顧:1,40,1-1,0)-1,14,61,46,94,9()f(1) = - - f(- -1)= - - f(- -1+5)= - -f(4)f(1)+ f(4)= 0()例例5已知集合已知集合M是滿足下列性質的函數(shù)是滿足下列性質的函數(shù)f(x)的全體:存在非零的全體:存在非零常數(shù)常數(shù)T,對任意,對任意xR,有,有f(x+T)=T f(x)成立成立(1)函數(shù))函數(shù)f(x)= x是否屬于集合是否屬于集合M?說明理由;?說明理由;(2)設函數(shù))設函數(shù)f(x)=ax(a0且且a1)的圖象與)的圖象與y= x的圖象有公共點的圖象有公共點證明:證明:

11、f(x)= ax M;(3)若函數(shù))若函數(shù) f(x)=sinKxM,求實數(shù),求實數(shù)K的取值范圍的取值范圍分析:分析:()()任取非零實數(shù)任取非零實數(shù)TR, 當當x = - - T時,時,f(x+T)= f( - - T +T)= f(0)=0, Tf(x)= Tf( - - T )= T(- -T)= - - T2, 而而T0, Tf(x)0,從而從而f(x+T)Tf(x)不存在非零常數(shù)不存在非零常數(shù)T,對任意,對任意xR,有,有f(x+T)=T f(x)成立成立f(x)= x M(2) 由題意可知:公共點在第一象限由題意可知:公共點在第一象限 設公共點的橫坐標為設公共點的橫坐標為T(T0),

12、), 于是(于是(T, aT)與()與(T,T)重合,)重合,aT=T, 任取任取xR,f(x+T)= ax+T = ax aT= axT= Tf(x), f(x)= axM (3) 當當K=0時,時,f(x)=0,顯然,顯然f(x)=0M當當K0時,時, f(x)=sinKxM, 存在非零常數(shù)存在非零常數(shù)T,對任意,對任意xR,有,有f(x+T)= Tf(x)成立成立 即即 sin(Kx+KT)=T sinKx恒成立恒成立 K0且且xR, KxR,Kx+KTR, sin(Kx+KT)- -1,1, 而而TsinKx- - T , T , sin(Kx+KT)=T sinKx恒成立,恒成立,

13、- -1,1= - - T , T , T =1,T=1 當當T=1時,時,sin(Kx+K)= sinKx恒成立,恒成立, K=2m (mZ) 當當T= - -1時,時,sin(Kx+K)= - -sinKx恒成立,恒成立, K =(2m- -1) ,(,(mZ)綜上所述,綜上所述,K的取值范圍是的取值范圍是K K= m ,mZ二、函數(shù)的思想方法及應用二、函數(shù)的思想方法及應用 數(shù)學思想方法是數(shù)學知識的精髓,是對數(shù)學的本質的認識,是數(shù)數(shù)學思想方法是數(shù)學知識的精髓,是對數(shù)學的本質的認識,是數(shù)學學習的指導思想和普遍使用的方法提煉數(shù)學思想方法,把握數(shù)學學學習的指導思想和普遍使用的方法提煉數(shù)學思想方法

14、,把握數(shù)學學科特點,是學會學科特點,是學會“數(shù)學的數(shù)學的”提出問題、分析問題和解決問題、把數(shù)提出問題、分析問題和解決問題、把數(shù)學學習與培養(yǎng)能力和發(fā)展智力結合起來的關鍵近幾年的數(shù)學高考試學學習與培養(yǎng)能力和發(fā)展智力結合起來的關鍵近幾年的數(shù)學高考試卷十分重視對數(shù)學思想方法的考查,并貫穿于整個試卷之中卷十分重視對數(shù)學思想方法的考查,并貫穿于整個試卷之中 例例1設奇函數(shù)設奇函數(shù)f(x)定義域為定義域為- -5,5 ,若當,若當x0,5 時,時, f(x)的圖象如下圖所示,的圖象如下圖所示,則不等式則不等式f(x)0的解集是的解集是 分析:分析:由奇函數(shù)的圖象關于原點對稱,作出由奇函數(shù)的圖象關于原點對稱,

15、作出f(x)在定義域內的圖象,在定義域內的圖象, 再由再由f(x)0找出使找出使f(x)的圖象在的圖象在x軸下方的區(qū)域,從而得到軸下方的區(qū)域,從而得到 不等式不等式f(x)0的解集為(的解集為(- -2,0) 2,5 例例2. 若函數(shù)若函數(shù)f(x)= a x b + 2在在 0,+)上為)上為 增函數(shù),則實數(shù)增函數(shù),則實數(shù)a、b的取值范圍是的取值范圍是 ; a0且且b0 考慮考慮y = x 當當b0時時, ,向右平移向右平移b個單位個單位 當當b0時時, 向左平移向左平移 b 個單位個單位分析分析: :y = x- - b y = a x- b y = a x b + 2例例3一棱錐被平行于底

16、面的平面截成一個小棱錐和一個棱臺,一棱錐被平行于底面的平面截成一個小棱錐和一個棱臺,若小棱錐及棱臺的體積分別是若小棱錐及棱臺的體積分別是y和和x,則,則y和和x的函數(shù)圖象大致形狀為(的函數(shù)圖象大致形狀為( ) 分析:分析:y + x = V(定值),(定值),y = V- - x對應的函數(shù)簡圖應是(對應的函數(shù)簡圖應是(B) 例例4等腰等腰 ABC中中C=90,AB=4,P、Q分別在線段分別在線段AB、AC上,且上,且PQ平分平分 ABC的面積,設的面積,設AP=x,PQ=y,求,求y關于關于x的函數(shù),并求其最值的函數(shù),并求其最值ACBQP分析:分析: S APQ = S ABC , x AQ

17、sin45= ( ),212124221 AQ =, x24 y2=x2+ AQ 2 - -2x AQ cos45= x2 +- -8, 232x y= (2x4)82322xx x2 + 232x2 = 8 , 322當且僅當當且僅當x= 2 2,4時,等號成立,時,等號成立, 42當當x= 2 時時 42ymin= , 828令令t = x2,2當當t4,4 時時 t + - -8是減函數(shù),是減函數(shù),t + - -84+8- -8=4; t32t32 當當t4 ,16時,時,t + - -8是增函數(shù),是增函數(shù), 2t32t32t + - -816+2- -8=10; y ,10當當t=16

18、,即,即x=4時,時,y max = 1021ACBQPxy則則832ttyt4,16, y2解函數(shù)應用題的一般步驟是:解函數(shù)應用題的一般步驟是:(2)將涉及到的其他變量用自變量的解析式表示;)將涉及到的其他變量用自變量的解析式表示;(3)建立目標函數(shù),確定函數(shù)的定義域;)建立目標函數(shù),確定函數(shù)的定義域;(4)根據目標函數(shù)解析式的特征用相應的方法求解)根據目標函數(shù)解析式的特征用相應的方法求解 (1)設計自變量;)設計自變量;例例5已知不等式已知不等式 (1- - x2) (p x2 - - x + 1)+ 1 對任意實數(shù)對任意實數(shù)p(0,3) 恒成立,求恒成立,求x的取值范圍的取值范圍31lo

19、g31log分析分析:原不等式等價于原不等式等價于:1- -x20px2- -x+103( 1- -x2) px2- -x+1即即px2- -x+10(p+3)x2- -x- -20p(0,3)令令 f(p)= x2 p + (1 x) , g(p)= x2 p +(3x2 - - x - -2), 則原不等式等價于:則原不等式等價于: ,對,對p(0,3)恒成立,)恒成立, f(p)0g(p)0現(xiàn)將現(xiàn)將f(p)及及g(p)看成關于看成關于p的一次函數(shù),的一次函數(shù), 則當則當x=0時,對任意實數(shù)時,對任意實數(shù)p(0,3)顯然成立;)顯然成立; 當當x 0時,只須時,只須 f(0)0g(3)0即

20、即1- -x06x2- -x- -2 0 ,解得:解得:- - x0或或0 x 213221綜上所述,綜上所述,x的取值范圍是的取值范圍是- - , 32例例6 已知二次函數(shù)已知二次函數(shù)y= f1(x)的圖象以原點為頂點的圖象以原點為頂點 且過點(且過點(1,1),反比例函數(shù)反比例函數(shù)y = f2(x)的圖象與的圖象與 直線直線y=x的兩個交點間的距離為的兩個交點間的距離為8,f(x)=f1(x)+f2(x) 1)求函數(shù))求函數(shù)f(x)的表達式;的表達式; 2)證明:當)證明:當a3 時,關于時,關于 x 的方程的方程f(x)= f(a)有三個實數(shù)解有三個實數(shù)解分析分析:1)由已知,設由已知,

21、設 f1(x)=ax2, 再由再由 f1(1)=1,得,得 a=1, f1(x)= x2 再設再設f2(x) = (k0),), xkkk它的圖象與直線它的圖象與直線y=x的兩個交點分別為的兩個交點分別為A( , ),),B(- - ,- - ),), kk由由 AB =8,得,得k=8, f2(x)= ,故,故 f(x)= x2 + x8x82)由由f(x)= f(a)得得 x2 + = a2 + x8a8即即 = - - x2 + a2 + a8x8在同一坐標系內作出在同一坐標系內作出f2(x)= 和和f3(x)= - - x2 + a2 + 的大致圖象,的大致圖象,x8a8當當a3時,時

22、,f3(2)- - f2(2)= a2 + - -80, a8或這樣或這樣: 由由f(x)= f(a)得得 x2 + = a2 + , x8a8ax8即即 (x- -a)(x + a - - )= 0 , 得方程的一個解為得方程的一個解為x1= a 方程方程x +a - - = 0化為化為ax2+a2x- -8=0 , ax8 由由a3得得 =a4+32a0,且,且x2= aaaa23242, x3= aaaa23242 顯然顯然 x20,x30 x2x3 且且x2x1 若若 x1 =x3 ,即,即 a = aaaa23242, 則則,解得解得a=0或或a= 314這與這與a3矛盾,矛盾,x1

23、 x3,故原方程有三個實數(shù)解,故原方程有三個實數(shù)解 例例7已知函數(shù)已知函數(shù)f(x)= 2x+a的反函數(shù)是的反函數(shù)是y= f - -1(x),設,設P(x +a,y1),), Q(x,y2),),R(2+a,y3)是)是y= f - -1(x)圖象上不同的點圖象上不同的點(1)如果存在正實數(shù))如果存在正實數(shù)x,使得,使得y1,y2,y3成等差數(shù)列,試用成等差數(shù)列,試用x表示實數(shù)表示實數(shù)a;(2)在()在(1)的條件下,如果實數(shù))的條件下,如果實數(shù)x是唯一的,試求實數(shù)是唯一的,試求實數(shù)a的取值范圍的取值范圍分析分析:(1)由由f(x)= 2x+a,易得,易得,f - -1(x)=log2(x -

24、- a)(xa) P、Q、R是是y= f - -1(x)圖象上不同的三點,圖象上不同的三點, y1= log2x ,y2= log2(x - - a),),y3=1,且,且a0(即(即x 2) 又又y1,y2,y3成等差數(shù)列,即成等差數(shù)列,即2y2=y1+y3, 2 log2(x - -a)=log2x + 1 , 即即log2= log2(x - -a);x - - a= ,x0 x2x2x2a = x - -(x0且且x2)()()令令y1= a,y2= x - -= t2 - -t,x221其中其中t = (t0且且t2) x22121 y2 = t 2 t = (t -1-1)2 -

25、- (t0且且t2) 21在同一直角坐標系中作出兩個函數(shù)的圖象在同一直角坐標系中作出兩個函數(shù)的圖象,便知:便知:當當a 0或或a = - - 時,兩圖象有一個交點,時,兩圖象有一個交點, 2121即在即在(1)的條件下,實數(shù)的條件下,實數(shù)x的值唯一的值唯一 因此,實數(shù)因此,實數(shù)a的取值范圍是的取值范圍是a a 0或或a = - - 例例8. 設函數(shù)設函數(shù)f(x)的定義域為的定義域為D,若存在,若存在x0D,使,使f(x0)= x0成立成立 ,則稱,則稱以(以(x0,y0)(這里)(這里y0= f(x0)為坐標的點是函數(shù))為坐標的點是函數(shù)f(x)的圖象上的的圖象上的“穩(wěn)定穩(wěn)定點點”()若函數(shù))若

26、函數(shù) f(x) = 的圖象上有且僅有兩個相異的的圖象上有且僅有兩個相異的“穩(wěn)定點穩(wěn)定點”, 試求實數(shù)試求實數(shù)a的取值范圍;的取值范圍;()已知定義在實數(shù)集)已知定義在實數(shù)集R上的奇函數(shù)上的奇函數(shù)f(x)存在有限個存在有限個“穩(wěn)定點穩(wěn)定點”, 求證:求證:f(x)必有奇數(shù)個必有奇數(shù)個“穩(wěn)定點穩(wěn)定點”axx13axx13axx1113 設設P(x1,x1),),Q(x2, x2)()(x1x2)是函數(shù))是函數(shù)f(x)= 的圖象上兩個的的圖象上兩個的“穩(wěn)定點穩(wěn)定點”, 分析分析:則有則有 = x1及及 = x2, axx2213即即 x12+ax1=3x1- -1(x1 - -a)及)及 x22+a

27、x2=3x2- -1(x2 - -a),), ()亦即亦即 x12+(a- -3)x1+1=0(x1 - -a)及)及x22+(a- -3)x2+1=0(x2 - -a) x1, x2是方程是方程x2 +(a- -3)x+1=0的兩根,的兩根, x1 - -a,x2 - -a 方程方程x2 +(a- -3)x+1=0有兩個相異實根且不等于有兩個相異實根且不等于- -a , =(a- -3) - -410且且(- -a)+(a- -3)()(- -a)+10, 2231解得解得: a的取值范圍為(的取值范圍為(- -,- - )(- - ,1)(5,+)31() f(x)是是R上的奇函數(shù)上的奇函

28、數(shù) , f(- -0)= - - f(0),即,即f(0)=0 , 故故,原點(原點(0,0)是函數(shù))是函數(shù)f(x)的的“穩(wěn)定點穩(wěn)定點” 若若f(x)還有還有“穩(wěn)定點穩(wěn)定點”(x0 ,x0),這里),這里 x00則由則由f(x)為奇函數(shù)可知:為奇函數(shù)可知:f(- -x0)= - - f(x0)= - - x0 , 這說明(這說明(- -x0 ,- -x0)也是)也是f(x)的的“穩(wěn)定點穩(wěn)定點”, 由題意知,它為有限個由題意知,它為有限個 因此,因此,f(x)的圖象上的的圖象上的“穩(wěn)定點穩(wěn)定點”除了原點除了原點外外且原點也為其且原點也為其“穩(wěn)定點穩(wěn)定點”,故,它的個數(shù)是奇數(shù),故,它的個數(shù)是奇數(shù)是

29、有限個成對出現(xiàn)的,是有限個成對出現(xiàn)的, 注注: : 學習能力學習能力(即學習新的數(shù)學知識的能力)(即學習新的數(shù)學知識的能力) 它是通過閱讀,理解以前沒有學過的新的數(shù)學知識(包括它是通過閱讀,理解以前沒有學過的新的數(shù)學知識(包括新的概念、定理、公式、法則和方法等),并能運用它們作新的概念、定理、公式、法則和方法等),并能運用它們作進一步的運算推理,解決有關問題的能力進一步的運算推理,解決有關問題的能力.學習能力型問題常見的有以下幾種情況:學習能力型問題常見的有以下幾種情況:(1)學習新的數(shù)學概念;)學習新的數(shù)學概念;(2)學習新的數(shù)學定理、公式和法則;)學習新的數(shù)學定理、公式和法則;(3)學習新

30、的數(shù)學方法)學習新的數(shù)學方法.例例9. 甲、乙兩大型公司生產同一種商品,但由于設備陳舊,需要更甲、乙兩大型公司生產同一種商品,但由于設備陳舊,需要更新經測算,對于函數(shù)新經測算,對于函數(shù)f(x)、g(x)及任意的及任意的x0,當甲公司投入,當甲公司投入x百萬元百萬元改造設備時,若乙公司投入改造設備費用小于改造設備時,若乙公司投入改造設備費用小于f(x)百萬元,則乙公司有百萬元,則乙公司有倒閉的風險,否則無倒閉風險;當乙公司投入倒閉的風險,否則無倒閉風險;當乙公司投入x百萬元改造設備時,若甲百萬元改造設備時,若甲公司投入改造設備費用小于公司投入改造設備費用小于g(x)百萬元,則甲公司有倒閉的風險,

31、否則百萬元,則甲公司有倒閉的風險,否則無倒閉風險無倒閉風險(1)請解釋)請解釋f(0)、g(0)的實際意義;的實際意義;(2)設直線)設直線y= x 與與y= f(x)的圖象交于點(的圖象交于點(x0 ,y0),),x0 0, 請解釋請解釋x0 ,y0的實際意義;的實際意義;(3)當)當f(x)= x+5,g(x)=2 +10時,甲、乙兩公司為了避免惡性競時,甲、乙兩公司為了避免惡性競 爭,經過協(xié)商,同意在雙方均無倒閉風險的情況下盡可能地減少改爭,經過協(xié)商,同意在雙方均無倒閉風險的情況下盡可能地減少改 造設備資金,問:此時甲造設備資金,問:此時甲、乙兩公司各投入多少百萬元?乙兩公司各投入多少百

32、萬元?201x分析:分析: (1) f(0)表示當甲公司不投入資金改造設備時,乙公司要避免倒閉的風表示當甲公司不投入資金改造設備時,乙公司要避免倒閉的風險,至少要投入險,至少要投入f(0)百萬元進行設備改造;百萬元進行設備改造; g(0)表示當乙公司不投入資金改造設備時,甲公司要避免倒閉的風表示當乙公司不投入資金改造設備時,甲公司要避免倒閉的風險,至少要投入險,至少要投入g(0)百萬元進行設備改造百萬元進行設備改造(2)由題意可知由題意可知 y0= x0,且,且y0= f(x0), f(x0)= x0 201201201 當甲投入當甲投入x0百萬元時,乙公司要避免倒閉的風險,要投入的資金百萬元

33、時,乙公司要避免倒閉的風險,要投入的資金至少是甲投入的至少是甲投入的 (3)設甲公司投入的資金是設甲公司投入的資金是x百萬元,乙公司投入的資金是百萬元,乙公司投入的資金是y百萬元,百萬元, 由題意可知:由題意可知: 當當yf(x)= x+5時,乙公司無倒閉風險;時,乙公司無倒閉風險;當當xg(y)=2 +10時,甲公司無倒閉風險時,甲公司無倒閉風險 y 由圖可知,雙方無倒閉風險的區(qū)域由圖可知,雙方無倒閉風險的區(qū)域是圖中的陰影部分是圖中的陰影部分 現(xiàn)由現(xiàn)由y=x+5102yx得得x=20y=25 在雙方均無倒閉風險的情況下,在雙方均無倒閉風險的情況下, 甲公司至少投入甲公司至少投入20百萬元、乙

34、公司至少百萬元、乙公司至少投入投入25百萬元,進行設備改造百萬元,進行設備改造練習(一)練習(一)1函數(shù)函數(shù)f(x)=tgx+ 的定義域為的定義域為 ;2函數(shù)函數(shù)y=log(6+2x- -x2)的單調遞增區(qū)間為)的單調遞增區(qū)間為 ; 3定義在定義在R上的奇函數(shù)上的奇函數(shù)f(x),對任何實數(shù),對任何實數(shù)x,總有,總有f(x+2)= - -f(x),), 當當x0,1時時, f(x)= x,則,則f(x)在在2,3上,上,f(x)= ;4已知關于已知關于x的方程(的方程( ) = 有正根,則實數(shù)有正根,則實數(shù)a的取值范圍的取值范圍 是是 ;5記函數(shù)記函數(shù)f(x)= 的定義域為的定義域為A,g(x)

35、= lg(x a - -1)()(2 a- - x) (a1) 的定義域為的定義域為B (1)求)求A;(;(2)若)若B A;求實數(shù);求實數(shù)a的取值范圍的取值范圍6已知函數(shù)已知函數(shù)f(x)= (a0, x0) (1)求證:)求證:f(x)在(在(0,+)上是遞增函數(shù);)上是遞增函數(shù); (2)若)若f(x)在在m,n上的值域是上的值域是m,n (mn),求),求a的取值的取值 范圍,并求相應的范圍,并求相應的m,n的值;的值; (3)若)若f(x)2x在(在(0,+)上恒成立,求)上恒成立,求a的取值范圍的取值范圍 xsin2121xaalg1lg1132xxxa11練習(二)練習(二)1對任

36、意實數(shù)對任意實數(shù)a- -1,1,函數(shù),函數(shù)f(x)= x2 +(a- -4)x+ 4- -2a的值總大的值總大 于零,則于零,則a的取值范圍是的取值范圍是 ;2如圖,已知如圖,已知ABCD是長方形紙片,是長方形紙片,AB=2,AD=4,在,在BC邊上有一動點邊上有一動點 P,把紙片的左下角折起,使點,把紙片的左下角折起,使點A與點與點P重合,且折痕線段重合,且折痕線段MN的端點的端點 M在在AB上,上,N在在AD上,設上,設PAB= (1)用)用 表示線段表示線段MN的長度的長度f( ); (2)求)求f( )的定義域的定義域 K D C A B P N M3等腰直角等腰直角 ABC,C=90

37、,AB = 4,P、Q分別在線分別在線 段段AB、AC上,且上,且PQ平分平分 ABC的面積,設的面積,設 AP=x, PQ=y求求y關于關于x的函數(shù),并求最大值的函數(shù),并求最大值4a取何值時,方程取何值時,方程lg(x- -1)+ lg(3- -x)= lg(1- -ax) 有一解,兩解,無解?有一解,兩解,無解?5某單位用木料制作如圖所示的框架,某單位用木料制作如圖所示的框架, 框架的下部是邊長分別為框架的下部是邊長分別為x,y(單位:(單位:m)的矩形,)的矩形, 上部是等腰三角形要求框架圍成的總面積為上部是等腰三角形要求框架圍成的總面積為8m2, 問問x,y分別為多少(精確到分別為多少

38、(精確到0001m)時,用料最省?)時,用料最省?6定義在定義在R上的函數(shù)上的函數(shù)f(x)滿足:如果對任意滿足:如果對任意x1,x2R, 都有都有f( ) f(x1)+f(x2),則稱,則稱f(x)是是R上的上的 凹函數(shù)已知二次函數(shù)凹函數(shù)已知二次函數(shù)f(x)= ax2+x(aR,且,且a0) (1)求證:當)求證:當a 0時,函數(shù)時,函數(shù)f(x)是凹函數(shù);)是凹函數(shù); (2)如果)如果x0,1時,時, f(x) 1,試求,試求a的取值范圍的取值范圍221xx 21答案:答案:練習(一)練習(一)1 2k ,2k + )(2k + ,2k +,kZ 2 ,2) 3f(x)= 2 - - x 4(

39、 ,1)5(1)A=(- -,- - 1) 1,+),(),(2)()(- -,- - 2 ,1)6(1)略;()略;(2)0a ,m = ,n = ;(;(3)a 練習(二)練習(二)1(- -,1)(3,+) 2(1)f( )= ,(,(2) , 3y = (2x4),當),當x=4時,時,ymax=4當當a=0 或或 a1時,原方程有一解;時,原方程有一解; 當當0a 時,原方程有兩解;當時,原方程有兩解;當a0或或a1時,原方程無解時,原方程無解 22411012121aa24112aa2411242cossin183222xx1012431315用料長度用料長度 = 2x+2y+2( x)= ( + )x + , 當當x = 8- -4 2343 (m),),y = 2 2828(m)時,用料最?。r,用料最省6(1)略;()略;(2)- -2a022232x1622

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!