《2022秋八年級(jí)數(shù)學(xué)上冊(cè) 第一章 勾股定理1.3 勾股定理的應(yīng)用教案(新版)北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022秋八年級(jí)數(shù)學(xué)上冊(cè) 第一章 勾股定理1.3 勾股定理的應(yīng)用教案(新版)北師大版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精品文檔
1.3 勾股定理的應(yīng)用
一、學(xué)生知識(shí)狀況分析
本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問(wèn)題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開(kāi)、折疊等活動(dòng).學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過(guò)相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問(wèn)題所需的知識(shí)根底和活動(dòng)經(jīng)驗(yàn)根底.
二、教學(xué)任務(wù)分析
本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書(shū)八年級(jí)〔上〕第一章?勾股定理?第3節(jié).具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題.當(dāng)然,在這些具體問(wèn)題的解決過(guò)程中,需要經(jīng)歷幾何圖形的抽象過(guò)程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于開(kāi)展學(xué)生的分析
2、問(wèn)題、解決問(wèn)題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于開(kāi)展學(xué)生合作交流的能力.
本節(jié)課的教學(xué)目標(biāo)是:
1.通過(guò)觀察圖形,探索圖形間的關(guān)系,開(kāi)展學(xué)生的空間觀念.
2.在將實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想.
3.在利用勾股定理解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題是本節(jié)課的重點(diǎn)也是難點(diǎn).
四、教法學(xué)法
1.教學(xué)方法
引導(dǎo)—探究—?dú)w納
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活潑,為了實(shí)現(xiàn)
3、本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
〔1〕從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;
〔2〕從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過(guò)程;
〔3〕利用探索研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程.
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件.
學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
五、教學(xué)過(guò)程分析
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
第一環(huán)節(jié):情境引入
內(nèi)容:
情景1:多媒體展示:
提出問(wèn)題:從二教樓到綜合樓
4、怎樣走最近?
情景2:
如圖:在一個(gè)圓柱石凳上,假設(shè)小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
意圖:
通過(guò)情景1復(fù)習(xí)公理:兩點(diǎn)之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.
效果:
從學(xué)生熟悉的生活場(chǎng)景引入,提出問(wèn)題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好根底.
第二環(huán)節(jié):合作探究
內(nèi)容:
學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究
5、“螞蟻怎么走最近〞就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法.
意圖:
通過(guò)學(xué)生的合作探究,找到解決“螞蟻怎么走最近〞的方法,將曲面最短距離問(wèn)題轉(zhuǎn)化為平面最短距離問(wèn)題并利用勾股定理求解.在活動(dòng)中體驗(yàn)數(shù)學(xué)建摸,培養(yǎng)學(xué)生與人合作交流的能力,增強(qiáng)學(xué)生探究能力,操作能力,分析能力,開(kāi)展空間觀念.
效果:
學(xué)生匯總了四種方案:
A’
A’
A’
〔1〕 〔2〕 〔3〕 〔4〕
學(xué)生很容易算出:情形〔1〕中A→B的路線長(zhǎng)為:,
情形〔2〕中A→B的路線長(zhǎng)為:
所以情形〔1〕的路線比情形〔2〕要短
6、.
學(xué)生在情形〔3〕和〔4〕的比擬中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開(kāi)圓柱得到矩形,情形〔3〕A→B是折線,而情形〔4〕是線段,故根據(jù)兩點(diǎn)之間線段最短可判斷〔4〕較短,最后通過(guò)計(jì)算比擬〔1〕和〔4〕即可.
如圖:
〔1〕中A→B的路線長(zhǎng)為:.
〔2〕中A→B的路線長(zhǎng)為:>AB.
〔3〕中A→B的路線長(zhǎng)為:AO+OB>AB.
〔4〕中A→B的路線長(zhǎng)為:AB.
得出結(jié)論:利用展開(kāi)圖中兩點(diǎn)之間,線段最短解決問(wèn)題.在這個(gè)環(huán)節(jié)中,可讓學(xué)生沿母線剪開(kāi)圓柱體,具體觀察.接下來(lái)后提問(wèn):怎樣計(jì)算AB?
在Rt△AA′B中,利用勾股定理可得,假設(shè)圓柱體高為12cm,底面半
7、徑為3cm,π取3,那么.
考前須知:本環(huán)節(jié)的探究把圓柱側(cè)面尋最短路徑拓展到了圓柱外表,目的僅僅是讓學(xué)生感知最短路徑的不同存在可能.但這一拓展使學(xué)生無(wú)法去論證最短路徑究竟是哪條.因此教學(xué)時(shí)因該在學(xué)生在圓柱外表感知后,把探究集中到對(duì)圓柱側(cè)面最短路徑的探究上.
方法提煉:解決實(shí)際問(wèn)題的關(guān)鍵是根據(jù)實(shí)際問(wèn)題建立相應(yīng)的數(shù)學(xué)模型,解決這一類(lèi)幾何型問(wèn)題的具體步驟大致可以歸納如下:
1.審題——分析實(shí)際問(wèn)題;
2.建?!⑾鄳?yīng)的數(shù)學(xué)模型;
3.求解——運(yùn)用勾股定理計(jì)算;
4.檢驗(yàn)——是否符合實(shí)際問(wèn)題的真實(shí)性.
第三環(huán)節(jié):做一做
內(nèi)容:
李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂
8、直于底邊AB,但他隨身只帶了卷尺,
〔1〕你能替他想方法完成任務(wù)嗎?
〔2〕李叔叔量得AD長(zhǎng)是30厘米,AB長(zhǎng)是40厘米,BD長(zhǎng)是50厘米,AD邊垂直于AB邊嗎?為什么?
〔3〕小明隨身只有一個(gè)長(zhǎng)度為20厘米的刻度尺,他能有方法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
解答:〔2〕
∴AD和AB垂直.
意圖:
運(yùn)用勾股定理逆定理來(lái)解決實(shí)際問(wèn)題,讓學(xué)生學(xué)會(huì)分析問(wèn)題,利用允許的工具靈活處理問(wèn)題.
效果:
先鼓勵(lì)學(xué)生自己尋找方法,再讓學(xué)生說(shuō)明李叔叔的方法的合理性.當(dāng)刻度尺較短時(shí),學(xué)生可能會(huì)在上面解決問(wèn)題的根底上,想出多種方法,如利用分段相加的方法量出AB,AD和BD
9、的長(zhǎng)度,或在AB,AD邊上各量一段較小長(zhǎng)度,再去量以它們?yōu)檫叺娜切蔚牡谌?,從而得到結(jié)論.
第四環(huán)節(jié):小試牛刀
內(nèi)容:
1.甲、乙兩位探險(xiǎn)者到沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6 km/h的速度向正東行走,1時(shí)后乙出發(fā),他以5 km/h的速度向正北行走.上午10:00,甲、乙兩人相距多遠(yuǎn)?
解答:如圖:A是甲、乙的出發(fā)點(diǎn),10:00甲到達(dá)B點(diǎn),乙到達(dá)C點(diǎn).那么:
AB=2×6=12〔km〕
AC=1×5=5〔km〕
在Rt△ABC中:
∴BC=13〔km〕.
即甲乙兩人相距13 km.
2.如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎
10、么走最近?并求出最近距離.
解答:.
3.有一個(gè)高為1.5 m,半徑是1m的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,鐵棒在油桶外的局部為0.5 m,問(wèn)這根鐵棒有多長(zhǎng)?
解答:設(shè)伸入油桶中的長(zhǎng)度為x m.
那么最長(zhǎng)時(shí):
∴最長(zhǎng)是2.5+0.5=3〔m〕.
最短時(shí): .
∴最短是1.5+0.5=2〔m〕.
答:這根鐵棒的長(zhǎng)應(yīng)在2~3m之間.
意圖:
對(duì)本節(jié)知識(shí)進(jìn)行穩(wěn)固練習(xí),訓(xùn)練學(xué)生根據(jù)實(shí)際情形畫(huà)出示意圖并計(jì)算.
效果:
學(xué)生能獨(dú)立地畫(huà)出示意圖,將現(xiàn)實(shí)情形轉(zhuǎn)化為數(shù)學(xué)模型,并求解.
第五環(huán)節(jié):舉一反三
內(nèi)容:
1.如圖,在棱長(zhǎng)為10 cm
11、的正方體的一個(gè)頂點(diǎn)A處有一只螞蟻,現(xiàn)要向頂點(diǎn)B處爬行,螞蟻爬行的速度是1 cm/s,且速度保持不變,問(wèn)螞蟻能否在20 s內(nèi)從A爬到B?
B
A
B
C
B
A
解:如圖,在Rt△ABC中:
∵500>202 .
∴不能在20 s內(nèi)從A爬到B.
2.在我國(guó)古代數(shù)學(xué)著作?九章算術(shù)?中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少?
解答:設(shè)水池的水深A(yù)C為x尺,那么這
12、根蘆葦長(zhǎng)為
AD=AB=〔x+1〕尺,
在直角三角形ABC中,BC=5尺.
由勾股定理得:BC2+AC2=AB2.
即 52+ x2=〔x+1〕2.
25+x2= x2+2x+1.
2x=24.
∴ x=12,x+1=13.
答:水池的水深12尺,這根蘆葦長(zhǎng)13尺.
意圖:
第1題旨在對(duì)“螞蟻怎樣走最近〞進(jìn)行拓展,從圓柱側(cè)面到棱柱側(cè)面,都是將空間問(wèn)題平面化;第2題,學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國(guó)古代人民的聰明才智;運(yùn)用方程的思想并利用勾股定理建立方程.
效果:
學(xué)生能畫(huà)出棱柱的側(cè)面展開(kāi)圖,確定出AB位置,并正確計(jì)算.如有可能,還可把正
13、方體換成長(zhǎng)方體進(jìn)行討論.
學(xué)生能畫(huà)出示意圖,找等量關(guān)系,設(shè)適當(dāng)?shù)奈粗獢?shù)建立方程.
考前須知:對(duì)于普通班級(jí)而言,學(xué)生完成“小試牛刀〞,已經(jīng)根本完成課堂教學(xué)任務(wù).因此本環(huán)節(jié)可以作為教學(xué)中的一個(gè)備選環(huán)節(jié),共老師們根據(jù)學(xué)生狀況選用.
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié):
1.解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解.
2.在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題.
意圖:
鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史.
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出在尋求曲面最短路徑時(shí)
14、,往往考慮其展開(kāi)圖,利用兩點(diǎn)之間,線段最短進(jìn)行求解.并贊嘆我國(guó)古代數(shù)學(xué)的成就.
第七環(huán)節(jié):布置作業(yè)
1.課本習(xí)題1.4第1,2,3題.
2.如圖是學(xué)校的旗桿,旗桿上的繩子垂到了地面,并多出了一段,現(xiàn)在老師想知道旗桿的高度,你能幫老師想個(gè)方法嗎?請(qǐng)你與同伴交流設(shè)計(jì)方案?
考前須知:作業(yè)2作為學(xué)有余力的學(xué)生的思考題.
六、教學(xué)設(shè)計(jì)反思
本節(jié)從生動(dòng)有趣的問(wèn)題情景出發(fā),通過(guò)學(xué)生自主探究,運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題,既穩(wěn)固了根本知識(shí)點(diǎn),又在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,學(xué)會(huì)觀察,提高分析能力,滲透數(shù)學(xué)建摸思想.在設(shè)計(jì)中,我注重以下兩點(diǎn):
1.要充分利用好教材提供的素材
15、
“螞蟻怎么走最近〞是一個(gè)生動(dòng)有趣的問(wèn)題,讓學(xué)生充滿(mǎn)了探究的欲望,這個(gè)問(wèn)題表達(dá)了二、三維圖形的轉(zhuǎn)化,對(duì)開(kāi)展學(xué)生的空間觀念很有好處.
2.合理使用教材提供的練習(xí)
本節(jié)課通過(guò)“小試牛刀〞和“舉一反三〞把教材中的練習(xí)重組,使練習(xí)有梯度,既穩(wěn)固了根本知識(shí)點(diǎn),又訓(xùn)練了學(xué)生的應(yīng)用能力.第一個(gè)作業(yè)讓學(xué)生深入理解和應(yīng)用勾股定理及逆定理.
3.突破重點(diǎn)、突破難點(diǎn)的策略
在教學(xué)過(guò)程中教師應(yīng)通過(guò)情景創(chuàng)設(shè),激發(fā)興趣,鼓勵(lì)引導(dǎo)學(xué)生經(jīng)歷探索過(guò)程,得出結(jié)論,從而開(kāi)展學(xué)生的數(shù)學(xué)應(yīng)用能力,提高學(xué)生解決實(shí)際問(wèn)題的能力.
4.分層教學(xué)
根據(jù)本班學(xué)生實(shí)際情況可在教學(xué)過(guò)程中選擇:根底訓(xùn)練——“小試牛刀〞;提高訓(xùn)
16、練——“舉一反三〞;拓展訓(xùn)練——作業(yè)第2題.
5.評(píng)價(jià)方式
根據(jù)新課標(biāo)的評(píng)價(jià)理念,在教學(xué)過(guò)程中應(yīng)關(guān)注學(xué)生的參與程度,關(guān)注活動(dòng)中所反映出的思維水平,關(guān)注對(duì)實(shí)際問(wèn)題的理解水平,關(guān)注學(xué)生對(duì)根本知識(shí)的掌握情況和應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題的意識(shí)和能力.在教學(xué)過(guò)程中尊重學(xué)生的個(gè)體差異,對(duì)于學(xué)生的答復(fù)教師應(yīng)給予恰當(dāng)?shù)脑u(píng)價(jià)與鼓勵(lì),并幫助學(xué)生樹(shù)立學(xué)習(xí)數(shù)學(xué)的自信,充分發(fā)揮教育的價(jià)值.
附:板書(shū)設(shè)計(jì)
螞蟻怎樣走最近
情境引入———— 小試牛刀: 舉一反三—————
合作探究———— 1.—————— ?。保?——————
2.—————— 2.——————
3.—————— 課后作業(yè):
歡迎下載