高三數(shù)學(xué)總復(fù)習(xí) (回顧+突破+鞏固+提升作業(yè)) 第二節(jié) 圓與直線、圓與四邊形課件 文
《高三數(shù)學(xué)總復(fù)習(xí) (回顧+突破+鞏固+提升作業(yè)) 第二節(jié) 圓與直線、圓與四邊形課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)總復(fù)習(xí) (回顧+突破+鞏固+提升作業(yè)) 第二節(jié) 圓與直線、圓與四邊形課件 文(41頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第二節(jié) 圓與直線、圓與四邊形1.1.圓周角定理及其推論圓周角定理及其推論(1)(1)定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的_._.圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的_._.(2)(2)推論:推論:推論推論1 1:同弧或等弧所對(duì)的圓周角:同弧或等弧所對(duì)的圓周角_;在同圓或等圓中,;在同圓或等圓中,相等的圓周角所對(duì)的弧也相等的圓周角所對(duì)的弧也_._.推論推論2 2:半圓(或直徑)所對(duì)的圓周角是:半圓(或直徑)所對(duì)的圓周角是_;9090的圓周的圓周角所對(duì)的弧是角所對(duì)的弧是_._.一半一半一半一半相等相等相等相等直角直
2、角半圓半圓2.2.圓的切線的判定和性質(zhì)及弦切角定理圓的切線的判定和性質(zhì)及弦切角定理(1 1)切線的判定定理)切線的判定定理: :經(jīng)過(guò)半徑的經(jīng)過(guò)半徑的_并且并且_這條半徑這條半徑的直線是圓的切線的直線是圓的切線. .(2 2)切線的性質(zhì)定理)切線的性質(zhì)定理: :圓的切線垂直于經(jīng)過(guò)切點(diǎn)的圓的切線垂直于經(jīng)過(guò)切點(diǎn)的_._.推論推論1 1:經(jīng)過(guò)圓心且垂直于切線的直線經(jīng)過(guò):經(jīng)過(guò)圓心且垂直于切線的直線經(jīng)過(guò)_._.推論推論2 2:經(jīng)過(guò)切點(diǎn)且垂直于切線的直線經(jīng)過(guò):經(jīng)過(guò)切點(diǎn)且垂直于切線的直線經(jīng)過(guò)_._.(3)(3)切線長(zhǎng)定理:過(guò)圓外一點(diǎn)作圓的兩條切線,這兩條切線長(zhǎng)切線長(zhǎng)定理:過(guò)圓外一點(diǎn)作圓的兩條切線,這兩條切線長(zhǎng)
3、_._.外端外端垂直于垂直于半徑半徑切點(diǎn)切點(diǎn)圓心圓心相等相等(4)(4)弦切角定理:弦切角等于它所夾弧所對(duì)的弦切角定理:弦切角等于它所夾弧所對(duì)的_;弦切角;弦切角的度數(shù)等于它所夾弧的度數(shù)的的度數(shù)等于它所夾弧的度數(shù)的_._.3.3.與圓有關(guān)的比例線段與圓有關(guān)的比例線段(1 1)切割線定理及推論:)切割線定理及推論:定理:過(guò)圓外一點(diǎn)作圓的一條切線定理:過(guò)圓外一點(diǎn)作圓的一條切線和一條割線,切線長(zhǎng)是割線上從這和一條割線,切線長(zhǎng)是割線上從這點(diǎn)到兩個(gè)交點(diǎn)的線段長(zhǎng)的點(diǎn)到兩個(gè)交點(diǎn)的線段長(zhǎng)的_._.如圖,如圖,PTPT是是OO的切線,的切線,T T是切點(diǎn)是切點(diǎn),PAB,PAB是是OO的割線,則的割線,則PTPT
4、2 2=_.=_.圓周角圓周角一半一半比例中項(xiàng)比例中項(xiàng)PAPBPAPB推論:過(guò)圓外一點(diǎn)作圓的兩條割線,在一條割線上從這點(diǎn)到兩推論:過(guò)圓外一點(diǎn)作圓的兩條割線,在一條割線上從這點(diǎn)到兩個(gè)交點(diǎn)的線段長(zhǎng)的個(gè)交點(diǎn)的線段長(zhǎng)的_,等于另一條割線上對(duì)應(yīng)線段長(zhǎng)的,等于另一條割線上對(duì)應(yīng)線段長(zhǎng)的_._.如圖,如圖,PABPAB和和PCDPCD是是OO的兩條割線的兩條割線, ,則則PAPB=_.PAPB=_.積積積積PCPDPCPD(2 2)相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線)相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積段長(zhǎng)的積_._.如圖,圓的兩條弦如圖,圓的兩條弦ABAB、CDCD相交于圓
5、內(nèi)一點(diǎn)相交于圓內(nèi)一點(diǎn)P P,則則PAPB=_.PAPB=_.相等相等PCPDPCPD4.4.圓內(nèi)接四邊形圓內(nèi)接四邊形(1)(1)圓內(nèi)接四邊形的性質(zhì)定理及推論圓內(nèi)接四邊形的性質(zhì)定理及推論定理:圓內(nèi)接四邊形的對(duì)角定理:圓內(nèi)接四邊形的對(duì)角_._.推論:圓內(nèi)接四邊形的任何一個(gè)外角都等于它的推論:圓內(nèi)接四邊形的任何一個(gè)外角都等于它的_._.(2)(2)四點(diǎn)共圓的判定定理及推論四點(diǎn)共圓的判定定理及推論定理:如果一個(gè)四邊形的定理:如果一個(gè)四邊形的_,那么這個(gè)四邊形四個(gè),那么這個(gè)四邊形四個(gè)頂點(diǎn)共圓頂點(diǎn)共圓. .互補(bǔ)互補(bǔ)內(nèi)對(duì)角內(nèi)對(duì)角內(nèi)對(duì)角互補(bǔ)內(nèi)對(duì)角互補(bǔ)推論:如果四邊形的一個(gè)外角等于其推論:如果四邊形的一個(gè)外角等
6、于其_,那么這個(gè)四邊,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓形的四個(gè)頂點(diǎn)共圓. .(3)(3)托勒密定理托勒密定理圓內(nèi)接四邊形的兩對(duì)邊乘積之和等于兩條對(duì)角線的圓內(nèi)接四邊形的兩對(duì)邊乘積之和等于兩條對(duì)角線的_._.內(nèi)對(duì)角內(nèi)對(duì)角乘積乘積判斷下面結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打判斷下面結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“”或或“”). .(1 1)圓心角等于圓周角的)圓心角等于圓周角的2 2倍倍.( ).( )(2 2)相等的圓周角所對(duì)的弧也相等)相等的圓周角所對(duì)的弧也相等.( ).( )(3 3)任意一個(gè)四邊形、三角形都有外接圓)任意一個(gè)四邊形、三角形都有外接圓.( ).( )(4 4)等腰梯形一定有外接圓)等腰梯形一定有
7、外接圓.( ).( )(5 5)弦切角所夾弧的度數(shù)等于弦切角的度數(shù))弦切角所夾弧的度數(shù)等于弦切角的度數(shù).( ).( )【解析【解析】(1 1)錯(cuò)誤,若弧不一樣,則圓心角與圓周角的關(guān)系)錯(cuò)誤,若弧不一樣,則圓心角與圓周角的關(guān)系不確定不確定. .(2 2)錯(cuò)誤,只有同圓或等圓中,相等的圓周角所對(duì)的弧才相)錯(cuò)誤,只有同圓或等圓中,相等的圓周角所對(duì)的弧才相等等(3 3)錯(cuò)誤,任意一個(gè)四邊形不一定有外接圓,但任意一個(gè)三)錯(cuò)誤,任意一個(gè)四邊形不一定有外接圓,但任意一個(gè)三角形一定有外接圓角形一定有外接圓. .(4 4)正確,)正確, 可以推出等腰梯形的對(duì)角互補(bǔ),所以有外接圓可以推出等腰梯形的對(duì)角互補(bǔ),所以有
8、外接圓. .(5 5)錯(cuò)誤)錯(cuò)誤, ,弦切角等于它所夾的弧所對(duì)的圓周角,所夾的弧的弦切角等于它所夾的弧所對(duì)的圓周角,所夾的弧的度數(shù)等于該弧所對(duì)圓心角的度數(shù),所以弦切角所夾弧的度數(shù)等度數(shù)等于該弧所對(duì)圓心角的度數(shù),所以弦切角所夾弧的度數(shù)等于弦切角度數(shù)的于弦切角度數(shù)的2 2倍倍. .答案:答案:(1 1) (2 2) (3 3) (4 4) (5 5)考向考向 1 1 圓周角定理圓周角定理【典例【典例1 1】(20122012江蘇高考)如圖,江蘇高考)如圖,ABAB是圓是圓O O的直徑,的直徑,D D,E E為為圓上位于圓上位于ABAB異側(cè)的兩點(diǎn),連接異側(cè)的兩點(diǎn),連接BDBD并延長(zhǎng)至點(diǎn)并延長(zhǎng)至點(diǎn)C
9、C,使,使BD=DCBD=DC,連接,連接ACAC,AEAE,DEDE求證:求證:E=CE=C【思路點(diǎn)撥【思路點(diǎn)撥】可以連接可以連接ADAD,先證,先證B=C,B=C,利用圓周角定理再證利用圓周角定理再證E=CE=C即可即可. .也可以連接也可以連接OD,OD,利用利用ODAC, ODAC, 證證C=ODB=B,C=ODB=B,再證再證E=C.E=C.【規(guī)范解答【規(guī)范解答】方法一:連接方法一:連接AD.AD.ABAB是圓是圓O O的直徑,的直徑,ADB=90ADB=90,ADBD.ADBD.又又BD=DCBD=DC,ADAD是線段是線段BCBC的中垂線的中垂線. .AB=AC,B=CAB=AC
10、,B=C,又又EE和和BB為同弧所對(duì)的圓周角,為同弧所對(duì)的圓周角,B=EB=E,E=C.E=C.方法二:連接方法二:連接ODOD,因?yàn)?,因?yàn)锽DBDDCDC,O O為為ABAB的中點(diǎn),的中點(diǎn),所以所以O(shè)DAC,ODAC,于是于是ODB=C.ODB=C.因?yàn)橐驗(yàn)镺BOBODOD,所以,所以O(shè)DB=B,ODB=B,于是于是C=B.C=B.又因?yàn)橛忠驗(yàn)镋E和和BB為同弧所對(duì)的圓周角,為同弧所對(duì)的圓周角,故故E=BE=B,所以,所以E=C.E=C.【拓展提升【拓展提升】圓周角定理常用的三種轉(zhuǎn)化圓周角定理常用的三種轉(zhuǎn)化(1 1)圓周角與圓周角之間的轉(zhuǎn)化)圓周角與圓周角之間的轉(zhuǎn)化. .(2 2)圓周角與圓
11、心角之間的轉(zhuǎn)化)圓周角與圓心角之間的轉(zhuǎn)化. .(3 3)弧的度數(shù)與圓心角和圓周角之間的轉(zhuǎn)化)弧的度數(shù)與圓心角和圓周角之間的轉(zhuǎn)化. . 【變式訓(xùn)練【變式訓(xùn)練】(2013(2013遵義模擬)如圖,遵義模擬)如圖,A A,E E是半圓周上的兩是半圓周上的兩個(gè)三等分點(diǎn),直徑個(gè)三等分點(diǎn),直徑BC=4BC=4,ADBCADBC,垂足為,垂足為D D,BEBE與與ADAD相交于點(diǎn)相交于點(diǎn)F F,求求AFAF的長(zhǎng)的長(zhǎng). .【解析【解析】連接連接CECE,AOAO,ABAB,根據(jù),根據(jù)A A,E E是半圓周上的兩個(gè)三等分是半圓周上的兩個(gè)三等分點(diǎn),點(diǎn),BCBC為直徑,可得為直徑,可得CEB=90CEB=90,CB
12、E=30CBE=30,AOB=60AOB=60,故三角形故三角形AOBAOB為等邊三角形,為等邊三角形, OD=BD=1.OD=BD=1.FF是是ABOABO的重心,的重心,AD3,22AFAD3.33考向考向 2 2 圓的切線的性質(zhì)與判定、弦切角定理圓的切線的性質(zhì)與判定、弦切角定理【典例【典例2 2】(20132013大連模擬)大連模擬) 如圖所示,直線如圖所示,直線ABAB經(jīng)過(guò)經(jīng)過(guò)OO上上的點(diǎn)的點(diǎn)C C,并且,并且OAOAOBOB,CACACBCB,OO交直線交直線OBOB于于E E,D D,連接,連接ECEC,CD.CD.(1)(1)求證:直線求證:直線ABAB是是OO的切線的切線. .
13、(2)(2)若若 OO的半徑為的半徑為3 3,求求OAOA的長(zhǎng)的長(zhǎng)1tan CED2 ,【思路點(diǎn)撥【思路點(diǎn)撥】(1 1)連接)連接OCOC,證,證OCAB.OCAB.(2 2)首先判斷)首先判斷BCDBCDBECBEC,再由,再由 可得可得 最后根據(jù)最后根據(jù)BCBC2 2BDBDBEBE列方程求解列方程求解. .1tan CED2 ,BDCD1.BCEC2【規(guī)范解答【規(guī)范解答】(1 1)連接)連接OCOC,OAOAOBOB,CACACBCB,OCAB.OCAB.又又OCOC是是OO的半徑,的半徑,ABAB是是OO的切線的切線 (2)AB(2)AB是是OO的切線,的切線,BCDBCDEE,又,又
14、CBDCBDEBCEBC,BCDBCDBECBEC,2BCBDCDBCBD BE.BEBCEC設(shè)設(shè)BDBDx x,則,則BCBC2x2x,BCBC2 2BDBDBEBE,(2x)(2x)2 2x(xx(x6)6),解得,解得x=2,x=2,或或x=0 x=0(舍去),(舍去),BDBD2 2,OAOAOBOBBDBDODOD2 23 35.5.CD1BDCD1tan CED.EC2BCEC2又 ,【互動(dòng)探究【互動(dòng)探究】若把本例(若把本例(2 2)中的)中的“ ”“ ”, ,改為改為“CED=30CED=30”“O”“O的半徑為的半徑為3”3”改為改為“BCBC1”1”,求,求OO的半的半徑徑.
15、 .1tan CED2【解析【解析】ABAB是是OO的切線,的切線,BCDBCDE.E.又又CBDCBDEBCEBC,BCDBCDBECBEC,2BCBDCDBCBD BE.BEBCECCD3tan CEDEC3BDCD3.BCEC3又,23BC1BDBCBD BE333312rr.333 由,得,(),【拓展提升【拓展提升】證明直線是圓的切線的常用方法證明直線是圓的切線的常用方法(1)(1)若已知直線與圓有公共點(diǎn),則需證明圓心與公共點(diǎn)的連線若已知直線與圓有公共點(diǎn),則需證明圓心與公共點(diǎn)的連線垂直于已知直線即可垂直于已知直線即可. .(2)(2)若已知直線與圓沒(méi)有明確的公共點(diǎn),則需證明圓心到直線
16、若已知直線與圓沒(méi)有明確的公共點(diǎn),則需證明圓心到直線的距離等于圓的半徑的距離等于圓的半徑 【變式備選【變式備選】已知已知ABCABC中中,AB=AC,D,AB=AC,D是是ABCABC外接圓劣弧外接圓劣弧ACAC上的點(diǎn)(不與點(diǎn)上的點(diǎn)(不與點(diǎn)A A,C C重合),延長(zhǎng)重合),延長(zhǎng)BDBD至至E.E.(1 1)求證:)求證:ADAD的延長(zhǎng)線平分的延長(zhǎng)線平分CDE.CDE.(2 2)若)若BAC=30BAC=30,ABCABC中中BCBC邊上邊上的高為的高為 求求ABCABC外接圓的面積外接圓的面積. .23,【解析【解析】(1 1)如圖,設(shè))如圖,設(shè)F F為為ADAD延長(zhǎng)延長(zhǎng)線上一點(diǎn),線上一點(diǎn),AA
17、,B B,C C,D D四點(diǎn)共圓,四點(diǎn)共圓,CDF=ABC.CDF=ABC.又又AB=ACAB=AC,ABC=ACBABC=ACB,且,且ADB=ACBADB=ACB,ADB=CDFADB=CDF,對(duì)頂角對(duì)頂角EDF=ADBEDF=ADB,故,故EDF=CDFEDF=CDF,即即ADAD的延長(zhǎng)線平分的延長(zhǎng)線平分CDE.CDE.(2 2)設(shè))設(shè)O O為外接圓圓心,連接為外接圓圓心,連接AOAO并延長(zhǎng)交并延長(zhǎng)交BCBC于于H H,則,則AHBC.AHBC.連接連接OCOC,由題意,由題意OAC=OCA=15OAC=OCA=15,ACB=75ACB=75,OCH=60OCH=60. .設(shè)圓半徑為設(shè)圓
18、半徑為r,r,則則 解得解得r=2,r=2,故故ABCABC外接圓的面積為外接圓的面積為4.4.3rr232,考向考向 3 3 與圓有關(guān)的比例線段與圓有關(guān)的比例線段【典例【典例3 3】OO的割線的割線PABPAB交交OO于于A A,B B兩點(diǎn),割線兩點(diǎn),割線PCDPCD經(jīng)過(guò)圓心經(jīng)過(guò)圓心O,PEO,PE是是OO的切線,已知的切線,已知PA=6, PO=12PA=6, PO=12,求,求PEPE及及OO的的半徑半徑r.r.【思路點(diǎn)撥【思路點(diǎn)撥】由切割線定理,可求出由切割線定理,可求出PEPE的長(zhǎng),再利用切割線定的長(zhǎng),再利用切割線定理的推論求出理的推論求出OO的半徑的半徑. .1AB7 ,3【規(guī)范解
19、答【規(guī)范解答】由切割線定理,得由切割線定理,得PEPE2 2=PA=PAPBPB=PA=PA(PA+ABPA+AB)= =又又PCPCPD=PAPD=PAPBPB,即即(12-r)(12+r)=(12-r)(12+r)=144-r144-r2 2=80,r=80,r2 2=64,r=8.=64,r=8.16 (67 )80,3PE804 5,16 (67 )3【拓展提升【拓展提升】與圓有關(guān)的比例線段解題思路與圓有關(guān)的比例線段解題思路(1)(1)見(jiàn)到圓的兩條相交弦就要想到相交弦定理見(jiàn)到圓的兩條相交弦就要想到相交弦定理. .(2)(2)見(jiàn)到圓的兩條割線就要想到割線定理見(jiàn)到圓的兩條割線就要想到割線定
20、理. .(3)(3)見(jiàn)到圓的切線和割線就要想到切割線定理見(jiàn)到圓的切線和割線就要想到切割線定理. .【變式訓(xùn)練【變式訓(xùn)練】如圖,已知如圖,已知OO和和O O1 1內(nèi)切于點(diǎn)內(nèi)切于點(diǎn)A A,OO的弦的弦APAP交交O O1 1于點(diǎn)于點(diǎn)B B,PCPC切切O O1 1于點(diǎn)于點(diǎn)C C,且,且 求求O O1 1和和OO的半的半徑之比徑之比. .PC2PA2,【解析【解析】如圖,連接如圖,連接OPOP,OAOA,O O1 1B B,OPAOPA和和O O1 1BABA是相似的等是相似的等腰三角形,腰三角形,APO=ABOAPO=ABO1 1, ,OO1 1BOP, BOP, 由切割線定理由切割線定理, ,得
21、得PCPC2 2=PB=PBPAPA= =(PA-ABPA-AB)PA=PAPA=PA2 2-PA-PAABAB,兩端同除以兩端同除以PAPA2 2得得1AOAB.AOAP222PCAB2AB11PAPA2PA ,即(),1AOAB1AB1.PA2AOAP2,考向考向 4 4 四點(diǎn)共圓的判定及應(yīng)用四點(diǎn)共圓的判定及應(yīng)用【典例【典例4 4】(20132013鄭州模擬)鄭州模擬) 如圖所示,銳角三角形如圖所示,銳角三角形ABCABC的的內(nèi)心為內(nèi)心為I I,過(guò)點(diǎn),過(guò)點(diǎn)A A作直線作直線BIBI的垂線,垂足為的垂線,垂足為H H,點(diǎn),點(diǎn)E E為內(nèi)切圓為內(nèi)切圓I I與與邊邊CACA的切點(diǎn)的切點(diǎn)(1)(1)
22、求證:四點(diǎn)求證:四點(diǎn)A A,I I,H H,E E共圓共圓. .(2)(2)若若CC5050,求,求IEHIEH的度數(shù)的度數(shù)【思路點(diǎn)撥【思路點(diǎn)撥】(1 1)由)由AEIAEIAHIAHI9090,可證四點(diǎn)共圓,可證四點(diǎn)共圓. .(2 2)由內(nèi)心為)由內(nèi)心為I I,可得,可得HIAHIA與與ABI,BAIABI,BAI的關(guān)系,進(jìn)而得到的關(guān)系,進(jìn)而得到HIAHIA與與CC的關(guān)系,再由的關(guān)系,再由IEHIEHHAIHAI即可求解即可求解. .【規(guī)范解答【規(guī)范解答】(1)(1)由圓由圓I I與邊與邊ACAC相切于點(diǎn)相切于點(diǎn)E E,得得IEAEIEAE,結(jié)合,結(jié)合IHAHIHAH,得,得AEIAEIAH
23、IAHI9090. .所以,四點(diǎn)所以,四點(diǎn)A A,I I,H H,E E共圓共圓(2)(2)由由(1)(1)知四點(diǎn)知四點(diǎn)A A,I I,H H,E E共圓,得共圓,得IEHIEHHAI.HAI.HIAHIAABIABIBAIBAI結(jié)合結(jié)合IHAHIHAH,得,得HAIHAI9090HIAHIA所以所以IEHIEH =25=25. .11ABCBAC2211ABCBAC(180C)22190C.21C2 ,1C2【拓展提升【拓展提升】圓內(nèi)接四邊形的重要結(jié)論圓內(nèi)接四邊形的重要結(jié)論(1 1)內(nèi)接于圓的平行四邊形是矩形)內(nèi)接于圓的平行四邊形是矩形. .(2 2)內(nèi)接于圓的菱形是正方形)內(nèi)接于圓的菱形是
24、正方形. .(3 3)內(nèi)接于圓的梯形是等腰梯形)內(nèi)接于圓的梯形是等腰梯形【變式訓(xùn)練【變式訓(xùn)練】(2013(2013武陵模擬)如圖,在武陵模擬)如圖,在ABCABC中,中,ACBACB為為鈍角,點(diǎn)鈍角,點(diǎn)E,HE,H是邊是邊ABAB上的點(diǎn),點(diǎn)上的點(diǎn),點(diǎn)K K和和M M分別是邊分別是邊ACAC和和BCBC上的點(diǎn),上的點(diǎn),且且AH=ACAH=AC,EB=BCEB=BC,AE=AKAE=AK,BH=BM.BH=BM.(1)(1)求證:求證:E E,H H,K K,M M四點(diǎn)共圓四點(diǎn)共圓. .(2)(2)若若KE=EHKE=EH,CE=3CE=3,求線段,求線段KMKM的長(zhǎng)的長(zhǎng). . 【解析【解析】(1
25、 1)連接)連接CHCH,AC=AHAC=AH,AK=AEAK=AE,四邊形四邊形CHEKCHEK為等腰梯形,為等腰梯形,AEK=AHC=ACHAEK=AHC=ACH,CC,H H,E E,K K四點(diǎn)共圓,同理,四點(diǎn)共圓,同理,C C,E E,H H,M M四點(diǎn)共圓,四點(diǎn)共圓,即即E E,H H,M M,K K均在點(diǎn)均在點(diǎn)C C,E E,H H所確定的圓上,故所確定的圓上,故E E,H H,K K,M M四四點(diǎn)共圓點(diǎn)共圓. .(2 2)連接)連接EMEM,由(,由(1 1)得)得E E,H H,M M,C C,K K五點(diǎn)共圓,五點(diǎn)共圓,CC,E E,H H,M M四點(diǎn)共圓,四點(diǎn)共圓,BE=BCBE=BC,BH=BMBH=BM,四邊形四邊形MHECMHEC為等腰梯形,為等腰梯形,EM=HCEM=HC,故,故MKE=CEHMKE=CEH,由由KE=EHKE=EH,可得,可得KME=ECHKME=ECH,故故MKEMKECEHCEH,即即KM=CE=3.KM=CE=3.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案