精校版高中數(shù)學(xué)人教A版選修41 第二講 直線與圓的位置關(guān)系 學(xué)業(yè)分層測評8 Word版含答案

上傳人:仙*** 文檔編號:43231215 上傳時間:2021-11-30 格式:DOC 頁數(shù):10 大?。?39KB
收藏 版權(quán)申訴 舉報 下載
精校版高中數(shù)學(xué)人教A版選修41 第二講 直線與圓的位置關(guān)系 學(xué)業(yè)分層測評8 Word版含答案_第1頁
第1頁 / 共10頁
精校版高中數(shù)學(xué)人教A版選修41 第二講 直線與圓的位置關(guān)系 學(xué)業(yè)分層測評8 Word版含答案_第2頁
第2頁 / 共10頁
精校版高中數(shù)學(xué)人教A版選修41 第二講 直線與圓的位置關(guān)系 學(xué)業(yè)分層測評8 Word版含答案_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《精校版高中數(shù)學(xué)人教A版選修41 第二講 直線與圓的位置關(guān)系 學(xué)業(yè)分層測評8 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《精校版高中數(shù)學(xué)人教A版選修41 第二講 直線與圓的位置關(guān)系 學(xué)業(yè)分層測評8 Word版含答案(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、最新資料最新資料最新資料最新資料最新資料 學(xué)業(yè)分層測評(八) (建議用時:45分鐘) [學(xué)業(yè)達(dá)標(biāo)] 一、選擇題 1.AB是⊙O的切線,在下列給出的條件中,能判定AB⊥CD的是(  ) A.AB與⊙O相切于直線CD上的點(diǎn)C B.CD經(jīng)過圓心O C.CD是直徑 D.AB與⊙O相切于C,CD過圓心O 【解析】 圓的切線垂直于過切點(diǎn)的半徑或直徑. 【答案】 D 2.已知⊙O的直徑AB與弦AC的夾角為30,過C點(diǎn)的切線PC與AB的延長線交于P,PC=5,則⊙O的半徑是(  ) A.        B. C.10 D.5 【解析】 如圖,連接OC, ∠PAC=30,

2、由圓周角定理知, ∠POC=2∠PAC=60, 由切線性質(zhì)知∠OCP=90. ∴在Rt△OCP中,tan∠POC=. ∴OC===. 【答案】 A 3.如圖2313,CD切⊙O于B,CO的延長線交⊙O于A,若∠C=36,則∠ABD的度數(shù)是(  ) 圖2313 A.72     B.63 C.54 D.36 【解析】 連接O B. ∵CD為⊙O的切線,∴∠OBC=90. ∵∠C=36,∴∠BOC=54. 又∵∠BOC=2∠A,∴∠A=27, ∴∠ABD=∠A+∠C=27+36=63. 【答案】 B 4.如圖2314所示,⊙O是正△ABC的內(nèi)切圓,切點(diǎn)分別為E,

3、F,G,點(diǎn)P是弧EG上的任意一點(diǎn),則∠EPF=(  ) 圖2314 A.120 B.90 C.60 D.30 【解析】 如圖所示,連接OE,OF. ∵OE⊥AB,OF⊥BC,∴∠BEO=∠BFO=90, ∴∠EOF+∠ABC=180, ∴∠EOF=120,∴∠EPF=∠EOF=60. 【答案】 C 5.如圖2315所示,AC切⊙O于D,AO的延長線交⊙O于B,且AB⊥BC,若AD∶AC=1∶2,則AO∶OB=(  ) 圖2315 A.2∶1 B.1∶1 C.1∶2 D.1∶1.5 【解析】 如圖所示,連接OD,OC,則OD⊥AC. ∵AB⊥BC,

4、∴∠ODC=∠OBC=90. ∵OB=OD,OC=OC, ∴△CDO≌△CBO,∴BC=DC. ∵=,∴AD=DC, ∴BC=AC. 又OB⊥BC,∴∠A=30, ∴OB=OD=AO,∴=. 【答案】 A 二、填空題 6.如圖2316,在Rt△ABC中,∠ACB=90,AC=5,BC=12,⊙O分別與邊AB,AC相切,切點(diǎn)分別為E,C.則⊙O的半徑是________. 圖2316 【解析】 連接OE,設(shè)OE=r, ∵OC=OE=r,BC=12, 則BO=12-r,AB==13, 由△BEO∽△BCA,得=, 即=,解得r=. 【答案】  7.如圖2317,

5、在半徑分別為5 cm和3 cm的兩個同心圓中,大圓的弦AB與小圓相切于點(diǎn)C,則弦AB的長為______cm. 圖2317 【解析】 連接OA,OC, ∵AB是小圓的切線, ∴OC⊥AB,∴AC=A B. ∵在Rt△AOC中, AC==4(cm), ∴AB=8 cm. 【答案】 8 8.如圖2318所示,圓O的半徑為1,A,B,C是圓周上的三點(diǎn),滿足∠ABC=30,過點(diǎn)A作圓O的切線與OC的延長線交于點(diǎn)P,則PA=________. 圖2318 【解析】 連接OA.∵AP為⊙O的切線, ∴OA⊥AP. 又∠ABC=30,∴∠AOC=60. ∴在Rt△AOP中,

6、OA=1,PA=OAtan 60=. 【答案】  三、解答題 9.如圖2319,已知D是△ABC的邊AC上的一點(diǎn),AD∶DC=2∶1,∠C=45,∠ADB=60,求證:AB是△BCD的外接圓的切線. 圖2319 【證明】 如圖,連接OB,OC,OD,設(shè)OD交BC于E. 因?yàn)椤螪CB是所對的圓周角, ∠BOD是所對的圓心角, ∠BCD=45, 所以∠BOD=90. 因?yàn)椤螦DB是△BCD的一個外角, 所以∠DBC=∠ADB-∠ACB=60-45=15, 所以∠DOC=2∠DBC=30, 從而∠BOC=120. 因?yàn)镺B=OC,所以∠OBC=∠OCB=30. 在

7、△OEC中, 因?yàn)椤螮OC=∠ECO=30, 所以O(shè)E=EC. 在△BOE中,因?yàn)椤螧OE=90,∠EBO=30,所以BE=2OE=2EC, 所以==, 所以AB∥OD,所以∠ABO=90, 故AB是△BCD的外接圓的切線. 10.如圖2320,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,弦CD⊥AB于E,∠POC=∠PCE. 圖2320 (1)求證:PC是⊙O的切線; (2)若OE∶EA=1∶2,PA=6,求⊙O半徑. 【解】 (1)證明:在△OCP與△CEP中, ∵∠POC=∠PCE,∠OPC=∠CPE, ∴∠OCP=∠CEP. ∵CD⊥AB,∴∠CEP=90,

8、 ∴∠OCP=90. 又∵C點(diǎn)在圓上,∴PC是⊙O的切線. (2)法一:設(shè)OE=x,則EA=2x,OC=OA=3x. ∵∠COE=∠AOC,∠OEC=∠OCP=90, ∴△OCE∽△OPC, ∴=, 即(3x)2=x(3x+6),∴x=1, ∴OA=3x=3,即圓的半徑為3. 法二:由(1)知PC是⊙O的切線, ∴∠OCP=90. 又∵CD⊥OP,由射影定理知OC2=OEOP,以下同法一. [能力提升] 1.如圖2321,在⊙O中,AB為直徑,AD為弦,過B點(diǎn)的切線與AD的延長線交于C,若AD=DC,則sin∠ACO等于(  ) 圖2321 A.     B.

9、 C. D. 【解析】 連接BD,則BD⊥AC. ∵AD=DC,∴BA=BC, ∴∠BCA=45. ∵BC是⊙O的切線,切點(diǎn)為B, ∴∠OBC=90. ∴sin∠BCO===, cos ∠BCO===. ∴sin∠ACO=sin(45-∠BCO) =sin45cos ∠BCO-cos 45sin ∠BCO =-=. 【答案】 A 2.如圖2322所示,已知PA是圓O的切線,切點(diǎn)為A,PA=2,AC是圓O的直徑,PC與圓O交于B點(diǎn),PB=1,則圓O的半徑R=__________. 圖2322 【解析】 AB==. 由AB2=PBBC, ∴BC=3,Rt△AB

10、C中, AC==2, ∴R=. 【答案】  3.圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l,圓交于點(diǎn)D,E,則∠DAC=__________,DC=__________. 【解析】 連接OC, ∵OC=OB,∴∠OCB=∠OBC. 又∠DCA+∠ACO=90, ∠ACO+∠OCB=90, ∴∠DCA=∠OCB. ∵OC=3,BC=3, ∴△OCB是正三角形, ∴∠OBC=60,即∠DCA=60, ∴∠DAC=30. 在Rt△ACB中,AC==3, DC=ACsin 30= . 【答案】 30  4.如圖

11、2323,AD是⊙O的直徑,BC切⊙O于點(diǎn)D,AB,AC與圓分別相交于點(diǎn)E,F(xiàn). 圖2323 (1)AEAB與AFAC有何關(guān)系?請給予證明; (2)在圖中,如果把直線BC向上或向下平移,得到圖2324(1)或圖(2),在此條件下,(1)題的結(jié)論是否仍成立?為什么? 圖2324 【解】 (1)AEAB=AFAC. 證明:連接DE. ∵AD為⊙O的直徑,∴∠DEA=90. 又∵BC與⊙O相切于點(diǎn)D, ∴AD⊥BC,即∠ADB=90,∴∠ADB=∠DEA. 又∵∠BAD=∠DAE,∴△BAD∽△DAE, ∴=,即AD2=ABAE. 同理AD2=AFAC,∴AEAB=AFAC. (2)(1)中的結(jié)論仍成立. 因?yàn)锽C在平移時始終與AD垂直,設(shè)垂足為D′, 則∠AD′B=90. ∵AD為圓的直徑, ∴∠AED=∠AD′B=90. 又∵∠DAE=∠BAD′,∴△ABD′∽△ADE, ∴=,∴ABAE=ADAD′. 同理AFAC=ADAD′,故AEAB=AFAC. 最新精品資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!