高考數(shù)學(xué)人教A版理科配套題庫【第二章】函數(shù)與基本初等函數(shù)I 第8講 函數(shù)與方程

上傳人:仙*** 文檔編號:43051101 上傳時間:2021-11-29 格式:DOC 頁數(shù):7 大?。?36.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)人教A版理科配套題庫【第二章】函數(shù)與基本初等函數(shù)I 第8講 函數(shù)與方程_第1頁
第1頁 / 共7頁
高考數(shù)學(xué)人教A版理科配套題庫【第二章】函數(shù)與基本初等函數(shù)I 第8講 函數(shù)與方程_第2頁
第2頁 / 共7頁
高考數(shù)學(xué)人教A版理科配套題庫【第二章】函數(shù)與基本初等函數(shù)I 第8講 函數(shù)與方程_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)人教A版理科配套題庫【第二章】函數(shù)與基本初等函數(shù)I 第8講 函數(shù)與方程》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)人教A版理科配套題庫【第二章】函數(shù)與基本初等函數(shù)I 第8講 函數(shù)與方程(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 第8講 函數(shù)與方程 一、選擇題 1.“a<-2”是“函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點x0”的(  ) A.充分不必要條件      B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 解析 當(dāng)a<-2時,函數(shù)f(x)=ax+3在區(qū)間[-1,2]上單調(diào)遞減,此時f(-1)=3-a>0,f(2)=3+2a<0,所以函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點x0;當(dāng)函數(shù)f(x)=ax+3在

2、區(qū)間[-1,2]上存在零點x0時, 有f(-1)f(2)<0,即2a2-3a-9>0, 解得a>3或a<-. 答案 A 2.下列函數(shù)圖像與x軸均有公共點,其中能用二分法求零點的是(  ) 解析 能用二分法求零點的函數(shù)必須在含零點的區(qū)間(a,b)內(nèi)連續(xù),并且有f(a)·f(b)<0.A、B、D中函數(shù)不符合. 答案 C 3.函數(shù)f(x)=2x--a的一個零點在區(qū)間(1,2)內(nèi),則實數(shù)a的取值范圍是 (  ). A.(1,3) B.(1,2) C.(0,3) D.(0,2) 解析 由條件可知f(

3、1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a-3)<0,解之得0<a<3. 答案 C 4.已知f(x)是R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時,f(x)=x3-x,則函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點的個數(shù)為 (  ). A.6 B.7 C.8 D.9 解析 當(dāng)0≤x<2時,令f(x)=x3-x=0,得x=0或x=1. 根據(jù)周期函數(shù)的性質(zhì),由f(x)的最小正周期為2,可知y=f(x)在[0,6)上有6個零點, 又f(6)=f(3×2)=f(0)=0, ∴f(x

4、)在[0,6]上與x軸的交點個數(shù)為7. 答案 B 5.函數(shù)f(x)=-cos x在[0,+∞)內(nèi) (  ). A.沒有零點 B.有且僅有一個零點 C.有且僅有兩個零點 D.有無窮多個零點 解析 令f(x)=0,得=cos x,在同一坐標(biāo)系內(nèi)畫出兩個函數(shù)y=與y=cos x的圖象如圖所示,由圖象知,兩個函數(shù)只有一個交點,從而方程=cos x只有一個解. ∴函數(shù)f(x)只有一個零點. 答案 B 6.已知函數(shù)f(x)=xex-ax-1,則關(guān)于f(x)零點敘述正確的是(  ). A.當(dāng)a=0時,函數(shù)f(x)有兩個零點 B.函數(shù)f(x)必有一個零點是正數(shù) C.當(dāng)a

5、<0時,函數(shù)f(x)有兩個零點 D.當(dāng)a>0時,函數(shù)f(x)只有一個零點 解析 f(x)=0?ex=a+ 在同一坐標(biāo)系中作出y=ex與y=的圖象, 可觀察出A、C、D選項錯誤,選項B正確. 答案 B 二、填空題 7.用二分法研究函數(shù)f(x)=x3+3x-1的零點時,第一次經(jīng)計算f(0)<0,f(0.5)>0可得其中一個零點x0∈______,第二次應(yīng)計算________. 解析 ∵f(x)=x3+3x-1是R上的連續(xù)函數(shù),且f(0)<0,f(0.5)>0,則f(x)在x∈(0,0.5)上存在零點,且第二次驗證時需驗證f(0.25)的符號. 答案

6、 (0,0.5) f(0.25) 8.函數(shù)f(x)=則函數(shù)y=f[f(x)]+1的所有零點所構(gòu)成的集合為________. 解析 本題即求方程f[f(x)]=-1的所有根的集合,先解方程f(t)=-1,即或得t=-2或t=.再解方程f(x)=-2和f(x)=. 即或和或 得x=-3或x=和x=-或x=. 答案  9.已知函數(shù)f(x)=ex-2x+a有零點,則a的取值范圍是________. 解析 由原函數(shù)有零點,可將問題轉(zhuǎn)化為方程ex-2x+a=0有解問題,即方程a=2x-ex有解.令函數(shù)g(x)=2x-ex,則g′(x)=2-ex,令g′(x)=0,得x=ln 2,所以g(x)

7、在(-∞,ln 2)上是增函數(shù),在(ln 2,+∞)上是減函數(shù),所以g(x)的最大值為:g(ln 2)=2ln 2-2.因此,a的取值范圍就是函數(shù)g(x)的值域,所以,a∈(-∞,2ln 2-2]. 答案 (-∞,2ln 2-2] 10.若直角坐標(biāo)平面內(nèi)兩點P,Q滿足條件:①P、Q都在函數(shù)f(x)的圖象上;②P、Q關(guān)于原點對稱,則稱點對(P、Q)是函數(shù)f(x)的一個“友好點對”(點對(P、Q)與點對(Q,P)看作同一個“友好點對”).已知函數(shù)f(x)=則f(x)的“友好點對”的個數(shù)是________. 解析 設(shè)P(x,y)、Q(-x,-y)(x>0)為函數(shù)f(x)的“友好點對”,則

8、y=,-y=2(-x)2+4(-x)+1=2x2-4x+1,∴+2x2-4x+1=0,在同一坐標(biāo)系中作函數(shù)y1=、y2=-2x2+4x-1的圖象,y1、y2的圖象有兩個交點,所以f(x)有2個“友好點對”,故填2. 答案 2 三、解答題 11.設(shè)函數(shù)f(x)=(x>0). (1)作出函數(shù)f(x)的圖象; (2)當(dāng)0<a<b,且f(a)=f(b)時,求+的值; (3)若方程f(x)=m有兩個不相等的正根,求m的取值范圍. 解 (1)如圖所示. (2)∵f(x)= = 故f(x)在(0,1]上是減函數(shù),而在(1,+∞)上是增函數(shù), 由0<a<b且

9、f(a)=f(b), 得0<a<1<b,且-1=1-,∴+=2. (3)由函數(shù)f(x)的圖象可知,當(dāng)0<m<1時,方程f(x)=m有兩個不相等的正根. 12.已知函數(shù)f(x)=4x+m·2x+1有且僅有一個零點,求m的取值范圍,并求出該零點. 思路分析 由題意可知,方程4x+m·2x+1=0僅有一個實根,再利用換元法求解. 解析 ∵f(x)=4x+m·2x+1有且僅有一個零點, 即方程(2x)2+m·2x+1=0僅有一個實根. 設(shè)2x=t(t>0),則t2+mt+1=0. 當(dāng)Δ=0時,即m2-4=0, ∴m

10、=-2時,t=1;m=2時,t=-1(不合題意,舍去), ∴2x=1,x=0符合題意. 當(dāng)Δ>0時,即m>2或m<-2時, t2+mt+1=0有兩正或兩負(fù)根, 即f(x)有兩個零點或沒有零點. ∴這種情況不符合題意. 綜上可知:m=-2時,f(x)有唯一零點,該零點為x=0. 13.已知二次函數(shù)f(x)=x2-16x+q+3. (1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍; (2)是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且區(qū)間D的長度為12-t(視區(qū)間[a,b]的長度為b-a). 解 (1)∵函數(shù)f(x)=x2-16x+q+3

11、的對稱軸是x=8,∴f(x)在區(qū)間[-1,1]上是減函數(shù). ∵函數(shù)在區(qū)間[-1,1]上存在零點,則必有即∴-20≤q≤12. (2)∵0≤t<10,f(x)在區(qū)間[0,8]上是減函數(shù),在區(qū)間[8,10]上是增函數(shù),且對稱軸是x=8. ①當(dāng)0≤t≤6時,在區(qū)間[t,10]上,f(t)最大,f(8)最小, ∴f(t)-f(8)=12-t,即t2-15t+52=0, 解得t=,∴t=; ②當(dāng)6<t≤8時,在區(qū)間[t,10]上,f(10)最大,f(8)最小, ∴f(10)-f(8)=12-t,解得t=8; ③當(dāng)8<t<10時,在區(qū)間[t,10]上,f(10)最大

12、,f(t)最小, ∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9, ∴t=9. 綜上可知,存在常數(shù)t=,8,9滿足條件. 14.已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+(x>0). (1)若g(x)=m有零點,求m的取值范圍; (2)確定m的取值范圍,使得g(x)-f(x)=0有兩個相異實根. 解 (1)法一:∵g(x)=x+≥2=2e, 等號成立的條件是x=e, 故g(x)的值域是[2e,+∞), 因而只需m≥2e,則g(x)=m就有零點. 法二:作出g(x)=x+(x>0)的大致圖象如圖: 可知若使g(x

13、)=m有零點, 則只需m≥2e. 法三:由g(x)=m得 x2-mx+e2=0. 此方程有大于零的根, 故等價于, 故m≥2e. (2)若g(x)-f(x)=0有兩個相異的實根,即g(x)與f(x) 的圖象有兩個不同的交點,作出g(x)=x+(x>0)的大致圖象. ∵f(x)=-x2+2ex+m-1 =-(x-e)2+m-1+e2. 其圖象的對稱軸為x=e,開口向下,最大值為m-1+e2. 故當(dāng)m-1+e2>2e, 即m>-e2+2e+1時, g(x)與f(x)有兩個交點, 即g(x)-f(x)=0有兩個相異實根. ∴m的取值范圍是(-e2+2e+1,+∞)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!