《新編高中數(shù)學 第二章函數(shù)的單調性說課稿 北師大版必修1》由會員分享,可在線閱讀,更多相關《新編高中數(shù)學 第二章函數(shù)的單調性說課稿 北師大版必修1(6頁珍藏版)》請在裝配圖網上搜索。
1、
新編數(shù)學北師大版精品資料
高中數(shù)學 第二章《函數(shù)的單調性》說課稿 北師大版必修1
一、教材分析
函數(shù)的單調性是函數(shù)的重要性質.從知識的網絡結構上看,函數(shù)的單調性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調性等內容的基礎,在研究各種具體函數(shù)的性質和應用、解決各種問題中都有著廣泛的應用.函數(shù)單調性概念的建立過程中蘊涵諸多數(shù)學思想方法,對于進一步探索、研究函數(shù)的其他性質有很強的啟發(fā)與示范作用.
根據(jù)函數(shù)單調性在整個教材內容中的地位與作用,本節(jié)課教學應實現(xiàn)如下教學目標:
知識與技能 使學生理解函數(shù)單調性的概念,初步掌握判別函數(shù)單調性的方法;
過程與方法
2、引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數(shù)、單調減函數(shù)等概念;能運用函數(shù)單調性概念解決簡單的問題;使學生領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力.
情感態(tài)度與價值觀 在函數(shù)單調性的學習過程中,使學生體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度.
根據(jù)上述教學目標,本節(jié)課的教學重點是函數(shù)單調性的概念形成和初步運用.雖然高一學生已經有一定的抽象思維能力,但函數(shù)單調性概念對他們來說還是比較抽象的.因此,本節(jié)課的學習難點是函數(shù)單調性的概念形成.
二、教法學法
為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取了:
1
3、、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹?shù)耐评恚㈨樌赝瓿蓵姹磉_.
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍.
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力.
三、教學過程
函數(shù)單調性的概念產生和形成是本
4、節(jié)課的難點,為了突破這一難點,在教學設計上采用了下列四個環(huán)節(jié).
(一)創(chuàng)設情境,提出問題
?。▎栴}情境)(播放中央電視臺天氣預報的音樂).如圖為某地區(qū)2006年元旦這一天24小時內的氣溫變化圖,觀察這張氣溫變化圖:
[教師活動]引導學生觀察圖象,提出問題:
問題1:說出氣溫在哪些時段內是逐步升高的或下降的?
問題2:怎樣用數(shù)學語言刻畫上述時段內“隨著時間的增大氣溫逐漸升高”這一特征?
[設計意圖]問題是數(shù)學的心臟,問題是學生思維的開始,問題是學生興趣的開始.這里,通過兩個問題,引發(fā)學生的進一步學習的好奇心.
?。ǘ┨骄堪l(fā)現(xiàn) 建構概念
[學生
5、活動]對于問題1,學生容易給出答案.問題2對學生來說較為抽象,不易回答.
[教師活動]為了引導學生解決問題2,先讓學生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)= 4”這一情形進行描述.引導學生回答:對于自變量8<10,對應的函數(shù)值有1<4.舉幾個例子表述一下.然后給出一個鋪墊性的問題:結合圖象,請你用自己的語言,描述“在區(qū)間[4,14]上,氣溫隨時間增大而升高”這一特征.
在學生對于單調增函數(shù)的特征有一定直觀認識時,進一步提出:
問題3:對于任意的t1、t2∈[4,16]時,當t1< t2時,是否都有f(t1)
6、活動]通過觀察圖象、進行實驗(計算機)、正反對比,發(fā)現(xiàn)數(shù)量關系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調增函數(shù)概念的本質屬性,并嘗試用符號語言進行初步的表述.
[教師活動]為了獲得單調增函數(shù)概念,對于不同學生的表述進行分析、歸類,引導學生得出關鍵詞“區(qū)間內”、“任意”、“當時,都有”.告訴他們“把滿足這些條件的函數(shù)稱之為單調增函數(shù)”,之后由他們集體給出單調增函數(shù)概念的數(shù)學表述.提出:
問題4: 類比單調增函數(shù)概念,你能給出單調減函數(shù)的概念嗎?
最后完成單調性和單調區(qū)間概念的整體表述.
[設計意圖]數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要.但概念的高度抽象,
7、造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發(fā),經歷“數(shù)學化”、“再創(chuàng)造”的活動過程.剛升入高一的學生已經具備了一定的幾何形象思維能力,但抽象思維能力不強.從日常的描述性語言概念升華到用數(shù)學符號語言精確刻畫概念是本節(jié)課的難點.
?。ㄈ┳晕覈L試 運用概念
1.為了理解函數(shù)單調性的概念,及時地進行運用是十分必要的.
[教師活動]問題5:(1)你能找出氣溫圖中的單調區(qū)間嗎?(2)你能說出你學過的函數(shù)的單調區(qū)間嗎?請舉例說明.
[學生活動]對于(1),學生容易看出:氣溫圖中分別有兩個單調減區(qū)間和一個單調增區(qū)間.對于(2),學
8、生容易舉出具體函數(shù)如:,,,并畫出函數(shù)的草圖,根據(jù)函數(shù)的圖象說出函數(shù)的單調區(qū)間.
[教師活動]利用實物投影儀,投影出學生畫出的草圖和標出的單調區(qū)間,并指出學生回答問題時可能出現(xiàn)的錯誤,如:在敘述函數(shù)的單調區(qū)間時寫成并集.
[設計意圖]在學生已有認知結構的基礎上提出新問題,使學生明了,過去所研究的函數(shù)的相關特征,就是現(xiàn)在所學的函數(shù)的單調性,從而加深對函數(shù)單調性概念的理解.
2.對于給定圖象的函數(shù),借助于圖象,我們可以直觀地判定函數(shù)的單調性,也能找到單調區(qū)間.而對于一般的函數(shù),我們怎樣去判定函數(shù)的單調性呢?
[教師活動]問題6:證明在區(qū)間(0,+ ∞)上是單調減函數(shù).
9、
[學生活動]學生相互討論,嘗試自主進行函數(shù)單調性的證明,可能會出現(xiàn)不知如何比較與的大小、不會正確表述、變形不到位或根本不會變形等困難.
[教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,投影學生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式.
[學生活動]學生自我歸納證明函數(shù)單調性的一般方法和操作流程:取值作差變形定號判斷.
[設計意圖]有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領悟和學習過程更是如此.利用學生自己提出的問題,讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
?。ㄋ模┗仡櫡此忌罨拍?
[教
10、師活動]給出一組題:
1、定義在R上的單調函數(shù)滿足,那么函數(shù)是R上的單調增函數(shù)還是單調減函數(shù)?
2、若定義在R上的單調減函數(shù)滿足,你能確定實數(shù)的取值范圍嗎?
[學生活動]學生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結本節(jié)課的內容和方法.
[設計意圖]通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對函數(shù)單調性認識的再次深化.
[教師活動]作業(yè)布置:
(1)閱讀課本P37例2
(2)書面作業(yè):
必做:教材 P38-39 1、3、5
選做:二次函數(shù)在[0,+∞)是增函數(shù),滿足條件的實數(shù)的值唯一嗎?
探究:函數(shù)在定義域內是增
11、函數(shù),函數(shù)有兩個單調減區(qū)間,由這兩個基本函數(shù)構成的函數(shù)的單調性如何?請證明你得到的結論.
[設計意圖]通過兩方面的作業(yè),使學生養(yǎng)成先看書,后做作業(yè)的習慣.基于函數(shù)單調性內容的特點及學生實際,對課后書面作業(yè)實施分層設置,安排基本練習題、鞏固理解題和深化探究題三層.學生完成作業(yè)的形式為必做、選做和探究三種,使學生在完成必修教材基本學習任務的同時,拓展自主發(fā)展的空間,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成.
四、教學評價
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價.教師應當高度重視學生學習過程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養(yǎng)成、數(shù)學發(fā)現(xiàn)的能力,以及學習的興趣和成就感.學生熟悉的問題情境可以激發(fā)學生的學習興趣,問題串的設計可以讓更多的學生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以促進生生交流以及團隊精神,知識的生成和問題的解決可以讓學生感受到成功的喜悅,縝密的思考可以培養(yǎng)學生獨立思考的習慣.讓學生在教師評價、學生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質的提高,為學生的可持續(xù)發(fā)展打下基礎.