《【導與練】新課標高三數(shù)學一輪復習 大題沖關集訓二理》由會員分享,可在線閱讀,更多相關《【導與練】新課標高三數(shù)學一輪復習 大題沖關集訓二理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、大題沖關集訓(二)
1.已知函數(shù)f(x)=4cos ωx·sin(ωx+π4)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間0,π2上的單調(diào)性.
解:(1)f(x)=4cos ωx[sin ωxcos π4+cos ωxsin π4]
=4cos ωx[22sin ωx+22cos ωx]
=22sin ωxcos ωx+22cos2 ωx
=2sin 2ωx+2(cos 2ωx+1)
=2sin 2ωx+2cos 2ωx+2
=2sin(2ωx+π4)+2,
因為f(x)的最小正周期為π且ω>0,故2π2ω=π,則ω=1.
2、
(2)由(1)知,f(x)=2sin(2x+π4)+2.
若0≤x≤π2,則π4≤2x+π4≤5π4.
當π4≤2x+π4≤π2,
即0≤x≤π8時,f(x)單調(diào)遞增;
當π2<2x+π4≤5π4,
即π8<x≤π2時,f(x)單調(diào)遞減.
綜上可知,f(x)在區(qū)間[0,π8]上單調(diào)遞增,在區(qū)間(π8,π2]上單調(diào)遞減.
2.(2014高考遼寧卷)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>c.已知BA→·BC→=2,cos B=13,b=3,求:
(1)a和c的值;
(2)cos(B-C)的值.
解:(1)由BA→·BC
3、→=2,
得c·acos B=2,
又cos B=13,
所以ac=6.
由余弦定理,得a2+c2=b2+2accos B.
又b=3,
所以a2+c2=9+2×2=13.
解ac=6,a2+c2=13,
得a=2,c=3或a=3,c=2.
因為a>c,
所以a=3,c=2.
(2)在△ABC中,sin B=1-cos2B=1-(13) 2=223,
由正弦定理,得sin C=cbsin B=23×223=429.
因為a=b>c,
所以C為銳角,
因此cos C=1-sin2C=1-(429) 2=7
4、9.
于是cos(B-C)=cos Bcos C+sin Bsin C
=13×79+223×429
=2327.
3.(2014資陽二模)已知f(x)=sin(2x+π6)+cos(2x-π3).
(1)求f(x)的最大值及取得最大值時x的值;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(C)=1,c=23,sin A=2sin B,求△ABC的面積.
解:(1)f(x)=sin(2x+π6)+cos(2x-π3)
=32sin 2x+12cos 2x+12cos 2x+32sin 2x
=3sin 2x+cos 2x
=2sin(2
5、x+π6).
當2x+π6=2kπ+π2,k∈Z,
即x=kπ+π6,k∈Z時,函數(shù)f(x)取得最大值2.
(2)由f(C)=2sin(2C+π6)=1,
得sin(2C+π6)=12,
∵π6<2C+π6<2π+π6,
∴2C+π6=5π6,解得C=π3.
因為sin A=2sin B,根據(jù)正弦定理,得a=2b,由余弦定理,有c2=a2+b2-2abcos C,則(23)2=4b2+b2-2×2b2cos π3=3b2,解得b=2,a=4,故△ABC的面積S△ABC=12absin C=12×4×2×sin π3=23.
4
6、.(2014上饒市二模)設a∈R函數(shù)f(x)=cos x(asin x-cos x)+cos2(π2+x)滿足f(-π3)=f(0).
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)設銳角△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,且a2+c2-b2a2+b2-c2=c2a-c,求f(A)的取值范圍.
解:(1)f(x)=cos x(asin x-cos x)+cos2(π2+x)
=a2sin 2x-cos 2x,
由f(-π3)=f(0)得-3a4+12=-1,
∴a=23,
∴f(x)=3sin 2x-cos 2x=2sin(2x-π6),
由2kπ+π2≤2x-π6≤2
7、kπ+32π得kπ+π3≤x≤kπ+56π,k∈Z,
∴f(x)的單調(diào)遞減區(qū)間為[kπ+π3,kπ+56π].
(2)∵a2+c2-b2a2+b2-c2=c2a-c,
由余弦定理得2accosB2abcosC=ccosBbcosC=c2a-c,
即2acos B-ccos B=bcos C,由正弦定理得
2sin Acos B-sin Ccos B=sin Bcos C,
2sin Acos B=sin(B+C)=sin A,cos B=12,
∴B=π3,
∵△ABC為銳角三角形,
∴π6<A<π2,π6<2A-π6<5π6,
∴f(A)=2sin
8、(2A-π6)的取值范圍為(1,2].
5.(2014貴陽模擬)在△ABC中,角A,B,C所對的邊分別為a,b,c,B=π3.
(1)若b2=ac,求角A,C的大小.
(2)求sin A+sin C的取值范圍.
解:(1)由已知B=π3,在△ABC中,根據(jù)余弦定理,得b2=a2+c2-2accos π3=a2+c2-ac,又已知b2=ac,所以a2+c2-ac=ac,即(a-c)2=0,所以a=c,所以A=C,而A+C=π-π3=2π3,所以A=C=π3.
(2)由已知得sin A+sin C=sin A+sin(2π3-A)=32sin A+32cos A=3(32sin A+12
9、cos A)=3sin(A+π6),因為A∈(0,2π3),所以π6<A+π6<5π6,所以sin(A+π6)∈(12,1],所以3sin (A+π6)∈(32,3],即sin A+sin C的取值范圍為(32,3].
6. 函數(shù)f(x)=6cos2ωx2+3sin ωx-3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)=835,且x0∈(-103,23),求f(x0+1)的值.
解:(1)f(x)=6cos2ωx2+3sin ωx-3
=3cos
10、 ωx+3sin ωx
=23sin(ωx+π3).
由題意知正三角形ABC的高為23,
則BC=4,
所以函數(shù)f(x)的周期T=4×2=8,
即2πω=8,解得ω=π4.
所以函數(shù)f(x)的值域為[-23,23].
(2)因為f(x0)=835,由(1)有
f(x0)=23sin(πx04+π3)=835,
即sin(πx04+π3)=45,
由x0∈(-103,23),得πx04+π3∈(-π2,π2).
即cos(πx04+π3)=1-(45) 2=35,
故f(x0+1)=23sin(πx04+π4+π3)
=23sin[(πx04+π3)
11、+π4]
=23[sin(πx04+π3)cosπ4+cos(πx04+π3)sinπ4]
=23(45×22+35×22)
=765.
7.(2014昆明模擬)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等差數(shù)列,且2cos 2B-8cos B+5=0,求角B的大小,并判斷△ABC的形狀.
解:因為2cos 2B-8cos B+5=0,
所以2(2cos2B-1)-8cos B+5=0.
所以4cos2B-8cos B+3=0,
即(2cos B-1)(2cos B-3)=0.
解得cos B=12或cos B=32(舍去).
12、
因為0<B<π,
所以B=π3.
因為a,b,c成等差數(shù)列,所以a+c=2b.
所以cos B=a2+c2-b22ac=a2+c2-(a+c2) 22ac=12,
化簡得a2+c2-2ac=0,
解得a=c.
所以△ABC是等邊三角形.
8.(2014福州模擬)已知函數(shù)f(x)=2cos x2(3cos x2-sin x2),在△ABC中,有f(A)=3+1.
(1)若a2-c2=b2-mbc,求實數(shù)m的值;
(2)若a=1,求△ABC面積的最大值.
解:(1)f(x)=2cos x2(3cos x2-sin x2)=23cos2x2-2sin x2
13、cos x2=3+3cos x-sin x=3+2sin(π3-x),
由f(A)=3+1,可得3+2sin(π3-A)=3+1,
所以sin(π3-A)=12.
又A∈(0,π),
所以π3-A∈(-2π3,π3),
所以π3-A=π6,即A=π6.
由a2-c2=b2-mbc及余弦定理,可得m2=b2+c2-a22bc=cos A=32,所以m=3.
(2)由(1)知cos A=32,則sin A=12,
又b2+c2-a22bc=cos A=32,
所以b2+c2-a2=3bc≥2bc-a2,
即bc≤(2+3)a2=2+3,當且僅當b=c時等號成立,
所以S△ABC=12cbsin A≤2+34,
即△ABC面積的最大值為2+34.