高中數(shù)學 精講精練新人教A版第08章直線和圓的方程
《高中數(shù)學 精講精練新人教A版第08章直線和圓的方程》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 精講精練新人教A版第08章直線和圓的方程(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 20xx高中數(shù)學精講精練 第八章 直線和圓的方程 點 中點坐標 兩點間距離 圓 位置關(guān)系 點與圓的位置關(guān)系 直線與圓的位置關(guān)系 圓與圓的位置關(guān)系 方程形式 標準方程 一般方程 點到直線的距離 直 線 直線斜率與傾斜角 兩條直線位置關(guān)系 平行 相交 垂直 方程形式 點斜式 斜截式 兩點式 截距式 一般式 點與直線位置關(guān)系 直線與圓的方程 空間直角坐標系 【知識圖解】 【方法點撥】
2、 1.掌握直線的傾斜角,斜率以及直線方程的各種形式,能正確地判斷兩直線位置關(guān)系,并能熟練地利用距離公式解決有關(guān)問題.注意直線方程各種形式應用的條件.了解二元一次不等式表示的平面區(qū)域,能解決一些簡單的線性規(guī)劃問題. 2.掌握關(guān)于點對稱及關(guān)于直線對稱的問題討論方法,并能夠熟練運用對稱性來解決問題. 3.熟練運用待定系數(shù)法求圓的方程. 4.處理解析幾何問題時,主要表現(xiàn)在兩個方面:(1)根據(jù)圖形的性質(zhì),建立與之等價的代數(shù)結(jié)構(gòu);(2)根據(jù)方程的代數(shù)特征洞察并揭示圖形的性質(zhì). 5.要重視坐標法,學會如何借助于坐標系,用代數(shù)方法研究幾何問題,體會這種方法所體現(xiàn)的數(shù)形結(jié)合思想. 6.要善于綜合
3、運用初中幾何有關(guān)直線和圓的知識解決本章問題;還要注意綜合運用三角函數(shù)、平面向量等與本章內(nèi)容關(guān)系比較密切的知識. 第1課 直線的方程 【考點導讀】 理解直線傾斜角、斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的幾種形式,能根據(jù)條件,求出直線的方程. 高考中主要考查直線的斜率、截距、直線相對坐標系位置確定和求在不同條件下的直線方程,屬中、低檔題,多以填空題和選擇題出現(xiàn),每年必考. 【基礎(chǔ)練習】 1. 直線xcosα+y+2=0的傾斜角范圍是 2. 過點,且在兩坐標軸上的截距互為相反數(shù)的直線方程是 3.直線l經(jīng)過點(3,-1),且與兩坐標軸圍成一個等腰直角三角形,則直線l
4、的方程為 4.無論取任何實數(shù),直線必經(jīng)過一定點P,則P的坐標為(2,2) 【范例導析】 例1.已知兩點A(-1,2)、B(m,3) (1)求直線AB的斜率k; (2)求直線AB的方程; (3)已知實數(shù)m,求直線AB的傾斜角α的取值范圍. 分析:運用兩點連線的子斜率公式解決,要注意斜率不存在的情況. 解:(1)當m=-1時,直線AB的斜率不存在. 當m≠-1時,, (2)當m=-1時,AB:x=-1, 當m≠1時,AB:. (3)①當m=-1時,; ②當m≠-1時, ∵ ∴ 故綜合①、②得,直線AB的傾斜角 點撥:本題容易忽視對分母等于0和斜率不存在情況的討論
5、. 例2.直線l過點P(2,1),且分別交x軸、y軸的正半軸于點A、B、O為坐標原點. (1)當△AOB的面積最小時,求直線l的方程; (2)當|PA||PB|取最小值時,求直線l的方程. 分析: 引進合適的變量,建立相應的目標函數(shù),通過尋找函數(shù)最值的取得條件來求l的方程. 解 (1)設(shè)直線l的方程為y-1=k(x-2),則點A(2-,0),B(0,1-2k),且2->0, 1-2k>0,即k<0. △AOB的面積S=(1-2k)(2-)=[(-4k)++4]≥4,當-4k=,即k=時, △AOB的面積有最小值4,則所求直線方程是x+2y-4=0. (2)解法一:由題設(shè),可令直
6、線方程l為y-1=k(x-2). 分別令y=0和x=0,得A(2-,0),B(0,1-2k), ∴|PA||PB|=,當且僅當k2=1,即k=1時, |PA||PB|取得最小值4.又k<0, ∴k=-1,這是直線l的方程是x+y-3=0. 解法二:如下圖,設(shè)∠BAO=θ,由題意得θ∈(0,),且|PA||PB|= y x O P E F B A 例2圖 當且僅當θ=時, |PA||PB|取得最小值4,此時直線l的斜率為-1, 直線l的方程是x+y-3=0. 點評 ①求直線方程的基本方法包括利用條件直接求直線的基本量和利用待定系數(shù)法求直線的
7、基本量.②在研究最值問題時,可以從幾何圖形開始,找到取最值時的情形,也可以從代數(shù)角度出發(fā),構(gòu)建目標函數(shù),利用函數(shù)的單調(diào)性或基本不等式等知識來求最值. 例3.直線l被兩條直線l1:4x+y+3=0和l2:3x-5y-5=0截得的線段中點為P(-1,2).求直線l的方程. 分析 本題關(guān)鍵是如何使用好中點坐標,對問題進行適當轉(zhuǎn)化. 解:解法一 設(shè)直線l交l1于A(a,b),則點(-2-a,4-b)必在l2,所以有 ,解得 直線l過A(-2,5),P(-1,2),它的方程是3x+y+1=0. 解法二 由已知可設(shè)直線l與l1的交點為A(-1+m,2+n),則直線l與l2的交點為B(-1-m,
8、2-n),且l的斜率k=,∵A,B兩點分別l1和l2上,∴,消去常數(shù)項得-3m=n,所以k=-3, 從而直線l的方程為3x+y+1=0. 解法三 設(shè)l1、l2與l的交點分別為A,B,則l1關(guān)于點P(-1,2)對稱的直線m過點B,利用對稱關(guān)系可求得m的方程為4x+y+1=0,因為直線l過點B,故直線l的方程可設(shè)為3x-5y-5+λ(4x+y+1)=0.由于直線l點P(-1,2),所以可求得λ=-18,從而l的方程為3x-5y-5-18(4x+y+1)=0,即3x+y+1=0. 點評 本題主要復習有關(guān)線段中點的幾種解法,本題也可以先設(shè)直線方程,然后求交點,再根據(jù)中點坐標求出直線l的斜率,
9、但這種解法思路清晰,計算量大,解法一和解法二靈活運用中點坐標公式,使計算簡化,對解法二還可以用來求已知中點坐標的圓錐曲線的弦所在直線方程,解法三是利用直線系方程求解,對學生的思維層次要求較高。 【反饋練習】 1.已知下列四個命題①經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示;②經(jīng)過任意兩個不同點P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示;③不經(jīng)過原點的直線都可以用方程+=1表示;④經(jīng)過定點A(0,b)的直線都可以用方程y=kx+b表示,其中正確的是①③④ 2.設(shè)直線l的方程為,當直線l
10、的斜率為-1時,k值為__5__,當直線l 在x軸、y軸上截距之和等于0時,k值為1或3 3.設(shè)直線 ax+by+c=0的傾斜角為,且sin+cos=0,則a,b滿足的關(guān)系式為 4.若直線l:y=kx與直線2x+3y-6=0的交點位于第一象限,則直線l的傾斜角的取值范圍是 5.若直線4x-3y-12=0被兩坐標軸截得的線段長為,則c的值為 6.若直線(m2─1)x─y─2m+1=0不經(jīng)過第一象限,則實數(shù)m的取值范圍是 7.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程 分析
11、:利用點斜式或直線與方程的概念進行解答 解:∵P(2,3)在已知直線上,∴ 2a1+3b1+1=0,2a2+3b2+1=0 ∴2(a1-a2)+3(b1-b2)=0,即=-∴所求直線方程為y-b1=-(x-a1) ∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0 點撥:1.由已知求斜率; 2.運用了整體代入的思想,方法巧妙. 8.一條直線經(jīng)過點P(3,2),并且分別滿足下列條件,求直線方程: (1)傾斜角是直線x-4y+3=0的傾斜角的2倍; (2)與x、y軸的正半軸交于A、B兩點,且△AOB的面積最?。∣為坐標原點) 解:(1)設(shè)所求直線傾斜角為θ,已知直線
12、的傾斜角為α,則θ=2α,且tanα=,tanθ=tan2α=, 從而方程為8x-15y+6=0 (2)設(shè)直線方程為+=1,a>0,b>0, 代入P(3,2),得+=1≥2,得ab≥24, 從而S△AOB=ab≥12, 此時=,∴k=-=- 點撥:此題(2)也可以轉(zhuǎn)化成關(guān)于a或b的一元函數(shù)后再求其最小值 第2課 兩條直線的位置關(guān)系 【考點導讀】 1.掌握兩條直線平行與垂直的條件,能根據(jù)直線方程判定兩條直線的位置關(guān)系,會求兩條相交直線的交點,掌握點到直線的距離公式及兩平行線間距離公式. 2.高考數(shù)學卷重點考察兩直線平行與垂直的判定和點到直線的距離公式的運用,有時考察單
13、一知識點,有時也和函數(shù)三角不等式等結(jié)合,題目難度中等偏易. 【基礎(chǔ)練習】 1.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為-8 2.過點(-1,3)且垂直于直線x-2y+3=0的直線方程為2x+y-1=0 3.若三條直線和相交于一點,則k的值等于 . 【范例導析】 例1.已知兩條直線:x+m2y+6=0, :(m-2)x+3my+2m=0,當m為何值時, 與 (1) 相交;(2)平行;(3)重合? 分析:利用垂直、平行的充要條件解決. 解:當m=0時,:x+6=0,:x=0,∴∥, 當m=2時,:x+4y+6=0,:3y+2=0 ∴
14、與相交; 當m≠0且m≠2時,由得m=-1或m=3,由得m=3 故(1)當m≠-1且m≠3且m≠0時與相交。 (2)m=-1或m=0時∥, (3)當m=3時與重合。 點撥:判斷兩條直線平行或垂直時,不要忘了考慮兩條直線斜率是否存在. 例2.已知直線經(jīng)過點P(3,1),且被兩平行直線:x+y+1=0和:x+y+6=0截得的線段之長為5。求直線的方程。 分析:可以求出直線與兩平行線的交點坐標,運用兩點距離公式求出直線斜率 解法一::若直線的斜率不存在,則直線的方程為x=3,此時與、的交點分別是A1(3,-4)和 B1(3,-9),截得的線段AB的長|AB|=|-4+9|=5,符合
15、題意。若直線的斜率存在,則設(shè)的方程為y=k(x-3)+1, 解方程組得A(-) 解方程組 得B(,-) 由|AB|=5得 +=25, 解之,得k=0,即所求的直線方程為y=1。 綜上可知,所求的方程為x=3或y=1。 解法二.設(shè)直線與、分別相交于A(x1,y1)、B(x2,y2),則x1+y1+1=0, x2+y2+6=0。兩式相減,得(x1-x2)+(y1-y2)=5 ① 又(x1-x2)2+(y1-y2)2=25 ② 聯(lián)立① ②,可得或 由上可知,直線的傾斜角為0或90,又由直線過點P
16、(3,1),故所求的方程為x=3或y=1。 點撥:用待定系數(shù)法求直線方程時,要注意對斜率不存在的情況的討論. 【反饋練習】 1.已知直線在軸上的截距為1,且垂直于直線,則的方程是 2.若直線與互相垂直,則 -3或1 3.若直線l1:ax+2y+6=0與直線l2:x+(a-1)y+(a2-1)=0平行,則a的值是___-1___. 4.已知,且點到直線的距離等于,則等于 5. 經(jīng)過直線與的交點,且平行于直線的直線方程是3x+6y-2=0 6.線過點,過點,∥,且與之間的距離等于5,求與的方程。 解:與的方程分別為:12x-5y-60=0,12x-5y+5=0或x=5,x
17、=0 7.已知!ABC的三邊方程分別為AB:,BC:,CA:. 求:(1)AB邊上的高所在直線的方程;(2)∠BAC的內(nèi)角平分線所在直線的方程. 解:(1)AB邊上的高斜率為且過點C,解方程組得點C(,2)所以AB邊上的高方程為. (2)設(shè)P為∠BAC的內(nèi)角平分線上任意一點,則解得或,由圖形知即為所求. 第3課 圓的方程 【考點導讀】 1.掌握圓的標準方程與一般方程,能根據(jù)問題的條件選擇適當?shù)男问角髨A的方程;理解圓的標準方程與一般方程之間的關(guān)系,會進行互化。 2.本節(jié)內(nèi)容主要考查利用待定系數(shù)法求圓的方程,利用三角換元或數(shù)形結(jié)合求最值問題,題型難度以容易題和中檔題為主. 【
18、基礎(chǔ)練習】 1.已知點A(3,-2),B(-5,4),以線段AB為直徑的圓的方程為(x + 1)2 + (y-1)2 = 25 2.過點A(1,-1)、B(-1,1)且圓心在直線x+y-2=0上的圓的方程是(x-1)2+(y-1)2=4 3.已知圓C的半徑為2,圓心在軸的正半軸上,直線與圓C相切,則圓C的方程為 4.圓與y軸交于A、B兩點,圓心為P,若∠APB=120,則實數(shù)c值為_-11__ 5.如果方程所表示的曲線關(guān)于直線對稱,那么必有__D=E__ 【范例導析】 【例1】 設(shè)方程,若該方程表示一個圓,求m的取值范圍及這時圓心的軌跡方程。 分析:配成圓的標準方程再求解
19、解:配方得: 該方程表示圓,則有,得,此時圓心的軌跡方程為,消去m,得,由得x=m+3所求的軌跡方程是, 注意:方程表示圓的充要條件,求軌跡方程時,一定要討論變量的取值范圍,如題中 變式1:方程表示圓,求實數(shù)a的取值范圍,并求出其中半徑最小的圓的方程。 解:原方程可化為 當a時,原方程表示圓。 又 當,所以半徑最小的圓方程為 例2 求半徑為4,與圓相切,且和直線相切的圓的方程. 分析:根據(jù)問題的特征,宜用圓的標準方程求解. 解:則題意,設(shè)所求圓的方程為圓. 圓與直線相切,且半徑為4,則圓心的坐標為或. 又已知圓的圓心的坐標為,半徑為3. 若兩圓相切,則或. (1)當
20、時,,或(無解),故可得. ∴所求圓方程為,或. (2)當時,,或(無解),故. ∴所求圓的方程為,或. 【反饋練習】 1.關(guān)于x,y的方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示一個圓的充要條件是B=0且A=C≠0,D2+E2-4AF>0 2.過點P(-8,-1),Q(5,12),R(17,4)三點的圓的圓心坐標是(5,-1) 3.若兩直線y=x+2k與y=2x+k+1的交點P在圓x2+y2=4的內(nèi)部,則k的范圍是 4.已知圓心為點(2,-3),一條直徑的兩個端點恰好落在兩個坐標軸上,則這個圓的方程是 5.直線y=3x+1與曲線x2+y2=4相交于A、B兩
21、點,則AB的中點坐標是 6.方程表示的曲線是_兩個半圓 7.圓關(guān)于直線的對稱圓的方程是 8.如果實數(shù)x、y滿足等式,那么的最大值是 9.已知點和圓,求一束光線從點A經(jīng)x軸反射到圓周C的最短路程為___8___ 10.求經(jīng)過點A(5,2),B(3,2),圓心在直線2x─y─3=0上的圓的方程; 解:設(shè)圓心P(x0,y0),則有, 解得 x0=4, y0=5, ∴半徑r=, ∴所求圓的方程為(x─4)2+(y─5)2=10 11. 一圓與y軸相切,圓心在直線x-3y=0上,且直線y=x截圓所得弦長為2,求此圓的方程 解:因圓與y軸相切,且圓心在直線x-3y=0上,
22、故設(shè)圓方程為 又因為直線y=x截圓得弦長為2, 則有+=9b2, 解得b=1故所求圓方程為 或 點撥:(1)確定圓方程首先明確是標準方程還是一般方程;(2)待定系數(shù)法;(3)盡量利用幾何關(guān)系求a、b、r或D、E、F. 第4課 直線與圓的位置關(guān)系 【考點導讀】 能利用代數(shù)方法和幾何方法判定直線與圓的位置關(guān)系;熟練運用圓的有關(guān)性質(zhì)解決直線與圓、圓與圓的綜合問題,運用空間直角坐標系刻畫點的位置,了解空間中兩點間的距離公式及其簡單應用. 【基礎(chǔ)練習】 1.若直線4x-3y-2=0與圓x2+y2-2ax+4y+a2-12=0總有兩個不同交點,則a的取值范圍是-6<a<4 2
23、.直線x-y+4=0被圓x2+y2+4x-4y+6=0截得的弦長等于 3.過點P(2,1)且與圓x2+y2-2x+2y+1=0相切的直線的方程為 x=2或3x-4y-2=0 . 【范例導析】 例1.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R). (1)證明:不論m取什么實數(shù),直線l與圓恒交于兩點; (2)求直線被圓C截得的弦長最小時l的方程. 分析:直線過定點,而該定點在圓內(nèi),此題便可解得. (1)證明:l的方程(x+y-4)+m(2x+y-7)=0. 由得 即l恒過定點A(3,1). ∵圓
24、心C(1,2),|AC|=<5(半徑), ∴點A在圓C內(nèi),從而直線l恒與圓C相交于兩點. (2)解:弦長最小時,l⊥AC,由kAC=-, ∴l(xiāng)的方程為2x-y-5=0. 點撥:直線與圓相交截得弦長的最小值時,可以從垂徑定理角度考慮,充分利用圓的幾何性質(zhì). 例2.已知圓O: ,圓C: ,由兩圓外一點引兩圓切線PA、PB,切點分別為A、B,滿足|PA|=|PB|.求實數(shù)a、b間滿足的等量關(guān)系. 例2 解:連結(jié)PO、PC,∵|PA|=|PB|,|OA|=|CB|=1 ∴|PO|2=|PC|2,從而 化簡得實數(shù)a、b間滿足的等量關(guān)系為: . 例3.已知圓C與兩坐標軸都相切,圓心C到
25、直線的距離等于. 求圓C的方程. 解:設(shè)圓C半徑為,由已知得: ∴,或 ∴圓C方程為. 例4.如圖,在平面直角坐標系xOy中,平行于x軸且過點A(3,2)的入射光線l1被直線l:y=x反射.反射光線l2交y軸于B點,圓C過點A且與l1, l2都相切. (1)求l2所在直線的方程和圓C的方程; x y O A B l2 l1 l (2)設(shè)P,Q分別是直線l和圓C上的動點,求PB+PQ的最小值及此時點P的坐標. 例4 解:(1)直線設(shè). 的傾斜角為,反射光線所在的直線方程為 . 即. 已知圓C與, 圓心C在過點D且
26、與垂直的直線上, ,又圓心C在過點A且與垂直的直線上,,,圓C的半徑r=3, 故所求圓C的方程為. (2)設(shè)點關(guān)于的對稱點,則,得,固定點Q可發(fā)現(xiàn),當共線時,最小, 故的最小值為.此時由,得. 【反饋練習】 1.圓x2+y2-4x=0在點P(1,)處的切線方程為 2.已知直線過點,當直線與圓有兩個交點時,其斜率k的取值范圍是 3.設(shè)m>0,則直線(x+y)+1+m=0與圓x2+y2=m的位置關(guān)系為相切或相離 解析:圓心到直線的距離為d=,圓半徑為. ∵d-r=-=(m-2+1)=(-1)2≥0,∴直線與圓的位置關(guān)系是相切或相離. 4.圓(x-3)
27、2+(y-3)2=9上到直線3x+4y-11=0的距離等于1的點有個數(shù)為3 5.點P從(1,0)出發(fā),沿單位圓逆時針方向運動弧長到達Q點,則Q的坐標為 6.若圓與直線相切,且其圓心在軸的左側(cè),則的值為 7.設(shè)P為圓上的動點,則點P到直線的距離的最小值為 1 . 8.已知平面區(qū)域恰好被面積最小的圓及其內(nèi) 部所覆蓋. (1)試求圓的方程. (2)若斜率為1的直線與圓C交于不同兩點滿足,求直線的方程. 解:(1)由題意知此平面區(qū)域表示的是以構(gòu)成的三角形及其內(nèi)部,且△是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是,所以圓的方程是. (2)設(shè)直線的方程是:. 因為, 所以圓心到直線的距離是, 即 解得:.所以直線的方程是:.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應急處置程序和方法
- 某物業(yè)公司冬季除雪工作應急預案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應急預案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應急處理預案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報獎勵制度
- 物業(yè)管理:火情火災應急預案
- 某物業(yè)安保崗位職責
- 物業(yè)管理制度:節(jié)前工作重點總結(jié)
- 物業(yè)管理:某小區(qū)消防演習方案
- 某物業(yè)公司客服部工作職責