高考數(shù)學備考沖刺之易錯點點睛系列專題 數(shù)列學生版

上傳人:仙*** 文檔編號:41988619 上傳時間:2021-11-24 格式:DOC 頁數(shù):18 大?。?24.50KB
收藏 版權申訴 舉報 下載
高考數(shù)學備考沖刺之易錯點點睛系列專題 數(shù)列學生版_第1頁
第1頁 / 共18頁
高考數(shù)學備考沖刺之易錯點點睛系列專題 數(shù)列學生版_第2頁
第2頁 / 共18頁
高考數(shù)學備考沖刺之易錯點點睛系列專題 數(shù)列學生版_第3頁
第3頁 / 共18頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學備考沖刺之易錯點點睛系列專題 數(shù)列學生版》由會員分享,可在線閱讀,更多相關《高考數(shù)學備考沖刺之易錯點點睛系列專題 數(shù)列學生版(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、數(shù)列 一、高考預測 數(shù)列是歷年高考的重點與難點,以等差數(shù)列與等比數(shù)列為基礎考查數(shù)列的性質(zhì)及前n項和的問題是數(shù)列中的中低檔難度問題,一般只要熟悉等差數(shù)列與等比數(shù)列及其前n項和的性質(zhì)即可正確得出結果.等差數(shù)列與等比數(shù)列是高中階段學習的兩種最基本的數(shù)列,也是高考中經(jīng)??疾椴⑶抑攸c考查的內(nèi)容之一,這類問題多從數(shù)列的本質(zhì)入手,考查這兩種基本數(shù)列的概念、基本性質(zhì)、簡單運算、通項公式、求和公式等.本講內(nèi)容在高考中多以選擇題和填空題的形式出現(xiàn),屬于中低檔題.解題時應從基礎處著筆,首先要熟練掌握這兩種基本數(shù)列的相關性質(zhì)及公式,然后要熟悉它們的變形使用,善用技巧,減少運算量,既準又快地解決問題.除此以外,數(shù)列

2、與其他知識的綜合考查也是高考中??嫉膬?nèi)容,數(shù)列是一種特殊的函數(shù),它能與很多知識進行綜合,如方程、函數(shù)、不等式、極限,數(shù)學歸納法(理)等為主要綜合對象,概率、向量、解析幾何等為點綴.數(shù)列與其他知識的綜合問題在高考中大多屬于中高檔難度問題. 數(shù)列是新課程的必修內(nèi)容,從課程定位上說,其考查難度不應該太大,數(shù)列試題傾向考查基礎是基本方向.從課標區(qū)的高考試題看,試卷中的數(shù)列試題最多是一道選擇題或者填空題,一道解答題.由此我們可以預測2012年的高考中,數(shù)列試題會以考查基本問題為主,在數(shù)列的解答題中可能會出現(xiàn)與不等式的綜合、與函數(shù)導數(shù)的綜合等,但難度會得到控制. 二、知識導學 要點1:有關等差數(shù)列的

3、基本問題 1.涉及等差數(shù)列的有關問題往往用等差數(shù)列的通項公式和求和公式“知三求二”解決問題; 要點向3:等差、等比數(shù)列綜合問題 1.在解決等差數(shù)列或等比數(shù)列的相關問題時,“基本量法”是常用的方法,但有時靈活地運用性質(zhì),可使運算簡便,而一般數(shù)列的問題常轉化為等差、等比數(shù)列求解。 2.數(shù)列求通項的常見類型與方法:公式法、由遞推公式求通項,由求通項,累加法、累乘法等 3.數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、分組法、倒序相加法等。 4.解綜合題的成敗在于審清題目,弄懂來龍去脈,透過給定信息的表象,抓住問題的本質(zhì),揭示問題的內(nèi)在聯(lián)系和隱含條件,明確解題方向,形成解題策略.

4、要點4:可轉化為等差、等比數(shù)列的求和問題 某些遞推數(shù)列可轉化為等差、等比數(shù)列解決,其轉化途徑有: 1.湊配、消項變換——如將遞推公式(為常數(shù),≠0,≠1)。通過湊配變成;或消常數(shù)轉化為 2.取倒數(shù)法—如將遞推公式遞推式,考慮函數(shù)倒數(shù)關系有 令則可歸為型。 3.對數(shù)變換——如將遞推公式取對數(shù)得 4.換元變換——(其中p,q均為常數(shù),(或,其中p,q, r均為常數(shù))。一般地,要先在原遞推公式兩邊同除以,得:引入輔助數(shù)列(其中),得:則轉化為的形式。 要點5:數(shù)列求和的常用方法: 1、直接由等差、等比數(shù)列的求和公式求和,注意對公比的討論. 2、錯位相減法:主要用于一個等差數(shù)列與一

5、個等比數(shù)列對應項相乘所得的數(shù)列的求和,即等比數(shù)列求和公式的推導過程的推廣. 3、分組轉化法:把數(shù)列的每一項分成兩項,使其轉化為幾個等差、等比數(shù)列,再求解. 4、裂項相消法:主要用于通項為分式的形式,通項拆成兩項之差求和,正負項相消剩下首尾若干項,注意一般情況下剩下正負項個數(shù)相同. 5、倒序相加法:把數(shù)列正著寫和倒著寫相加(即等差數(shù)列求和公式的推導過程的推廣). 三、易錯點點睛 命題角度1 數(shù)列的概念 1.已知數(shù)列{an}滿足a1=1,an=a1+2a2+3a3+…+(n-1)an-1,(n≥2),則{an}的通項an=_________. [考場錯解] ∵an=a1+

6、2a2+3a3+…+(n-1)an-1,∴an-1=a1+2a2+3a3+…+(n-2)an-2,兩式相減得an-an-1=(n-1)an-1,∴an=nan-1.由此類推: an-1=(n-1)an-2,…a2=2a1,由疊乘法可得an= [專家把脈] 在求數(shù)列的通項公式時向前遞推一項時應考慮n的范圍.當n=1時,a1=與已知a1=1,矛盾. 3.已知數(shù)列{an}滿足a1=1,an=3n-1+an-1(n≥2) (1)求a2,a3; (2)求通項an的表達式. [考場錯解] (1)∵a1=1,∴a2=3+1=4,a3=32+4=13. (2)由已知an=3n-1+

7、an-1,即an-an-1=3n-1 即an成等差數(shù)列,公差d=3n-1.故an=1+(n-1)·3n-1. [專家把脈] (2)問中an-an-1=3n-1,3n-1不是常數(shù),它是一個變量,故不符合等差數(shù)列的定義. [對癥下藥] (1)∵a1=1,∴a2=4,a3=32+4=13. (2)由已知an-an-1=3n-1,故an=(an-an-1)+(an-1-an-2)+…+ (a2-a1)+a1=3n-1+3n-2+…+3+1=. 4.等差數(shù)列{an}中,a1+a2+a3=-24,a18+a19+a20=78,則此數(shù)列前20項和等于 (

8、 ) A.160 B.180 C. 200 D.220 [考場錯解] 由通項公式an=a1+(n+1)d.將a2,a3,a18,a19,a20都表示成a1和d.求a1、d,再利用等差數(shù)列求和,選C. [專家把脈] 此方法同樣可求得解.但解法大繁,花費時間多,計算量大故而出錯,應運用數(shù)列的性質(zhì)求解就簡易得多. [對癥下藥] B 由公式m+n=2Pam+an=2ap?(只適用等差數(shù)列)即可求解.由a1+a2+a3=-24,可得:3a2=-24 由a18+a19+a20=78,可得:3a19=78 即 a2=-8,a19=26又∵

9、S20==10(a2+a19)=180 2.若{an}是等差數(shù)列,首項a1>0,a2003+a2004>0,a2003·a2004<0,則使前n項和Sn>0成立的最大自然數(shù)n是 ( ) A.4005 B.4006 C.4007 D.4008 [考場錯解] ∵a2004+a2003>0,即2a1+2002d+2003d>0,(a1+2002d)(a1+2003d)<0,要使Sn>0.即使na1+d>0.這樣很難求出a1,d.從而求出最大的自然數(shù) n.故而判斷a2003>0,a2004<

10、;0,所以前2003項為正,從第2004項起為負,由等差數(shù)列的n項和的對稱性使Sn>0.故而取n=4005使Sn>0. [專家把脈] 此題運用等差數(shù)列前n項的性質(zhì)及圖象中應注意.a(chǎn)2003>0,a2004<0. 且忽視了這兩項的大?。? [對癥下藥] B ∵a1>0,a2003+a2004>0,a2003·a2004<0,且{an}為等差數(shù)列 ∴{an}表示首項為正數(shù),公差為負數(shù)的單調(diào)遞減等差數(shù)列,且a2003是絕對值最小的正數(shù),a2004是絕對值最大的負數(shù)(第一個負數(shù)),且|a2003|>|a2004|∴在等差數(shù)列{an}中,a200

11、3+a2004=a1+a4006>0,S4006=>0 ∴使Sn>0成立的最大自然數(shù)n是4006. 3.設無窮等差數(shù)列{an}的前n項和為Sn.(Ⅰ)若首項a1=,公差d=1,求滿足Sk2=(Sk)2的正整數(shù)k; (Ⅱ)求所有的無窮等差數(shù)列{an};使得對于一切正整數(shù)中k都有Sk2=(Sk)2成立. [考場錯解] (1)當a1=,d=1時,Sn=n2+n,由Sk2=(Sk)2得k4+k2=,即k=0或k=4. ∴k≠0.故k=4. (Ⅱ)由對一切正整數(shù)k都有Sk2=(Sk)2成立. 即k2a1+d=(ka1+)2 即(a1-)k2-adk2(k-1)+

12、k2(k2-1)-k2(k-1)2=0對—切正整數(shù)k恒成立故求得a1=0或1,d=0 ∴等差數(shù)列an={0,0,0,…},或an={1,1,1,…}. [專家把脈] (Ⅱ)中解法定對一切正整數(shù)k都成立.而不是一切實數(shù).故而考慮取k的特值也均成立. [對癥下藥] (Ⅰ)當a1=,d=1時,Sn=na1+由Sk2=(Sk)2,得k4+k2=(k2+k)2,即k3=0.又k≠0,所以k=4. (Ⅱ)設數(shù)列{an}的公差為d,則在Sk2=(Sk)2中分別取k=1,2,得 由(1)得a1=0或a1=1. 當a1=0時,代入(2)得d=0或d=6.若a1=0,d=0,

13、則an=0,sn=0,從而Sk2=(Sk)2成立;若a1=0,d=6,則an=6(n-1),由S3=18,(S3)2=324,S9=216知S9≠(S3)2,故所得數(shù)列不符合題意.當a1=1時,代入(2)得 4+6b=(2+d)2解得d=0或d=2.若a1=1,d=0,則an=1,Sn=n,從而Sk2=(Sk)2成立;若a1=1,d=2,則an=2n-1,Sn=1+3+…+(2n-1)=n2,從而Sk2=(Sk)2成立.綜上,共有3個滿足條件的無窮等差數(shù)列:①{an}:an=0,即0,0,0,…;②{an}:an=1,即1,1,1,…;③{an}:an=2n-1,即1,3,5,…. 4.

14、已知數(shù)列{an}的各項都是正數(shù),且滿足:a0=1,an+1=an·(4-an),nN.(1)證明an<an+1<2,n∈N.(2)求數(shù)列{an}的通項公式an. ×2(4-2),也即當x=k+1時 ak<ak+1<2成立,所以對一切n∈N,有ak<ak+1<2 (2)下面來求數(shù)列的通項:an+1=an(4-an)=[-(an-2)2+4],所以2(an+1-2)=-(an-2)2令bn=an-2,則bn=-=-(-)2=-·()2…=-()1+2+…+2n-1b2n,又bn=-1,所以bn=-()2n-1,即an=2+bn=2-()2n-1 專家會診1.要

15、善于運用等差數(shù)列的性質(zhì):“若m+n=p+q,則am+an=ap+aq”;等差數(shù)列前n項和符合二次函數(shù)特征.借助二次函數(shù)性質(zhì)進行數(shù)形結合法解等差數(shù)列問題.2.會運用一般與特殊的邏輯思維,利用滿足條件的特值求相關參數(shù)的值,學會分析問題和解決問題. 命題角度3 等比數(shù)列 1.數(shù)列{an}的前n項和記為Sn,已知a1=1,aa+1=(n=1,2,3…).證明:(Ⅰ)數(shù)列{}是等比數(shù)列;(Ⅱ)Sn+1=4an. [考場錯解] (Ⅰ)已知a1=1,an+1=,∴a2=3S1=3,∴S2=4 a3=·S2=2×4=8.∴S3=1+3+8=12. 即.故{}是公比為2的等比數(shù)

16、列. (Ⅱ)由(Ⅰ)知=4·于是Sn+1=4(n+1)·=4an.又a2=3.S2=a1+a2=4,因此對于任意正整數(shù)n≥1,都有Sn+1=4an. [專家把脈] (Ⅰ)中利用有限項判斷數(shù)列類型是運用不完全歸納法,應給予證明. (Ⅱ)中運用前推一項必須使 n≥2. [對癥下藥] (Ⅰ) ∵an+1=Sn+1-Sn,an+1=Sn,∴(n+2)Sn=n(Sn+1-Sn),整理得nSn+1=2(n+1)=Sn,所以=2故{}是以2為公比的等比數(shù)列. (Ⅱ)由(Ⅰ)知=4·(n2).于是Sn+1=4(n+1)·=4an(n≥2).又a2=3S1=3,

17、 故S1=a1+a2=4.因此對于任意整數(shù)n≥1,都有Sn+1=4an. 2.已知數(shù)列{an}的前n項和為Sn,Sn=(an-1)(n∈N*).(Ⅰ) 求a1,a2;(Ⅱ)求證數(shù)列{an}是等比數(shù)列. [考場錯解] (Ⅰ)S1=(a1-1),得a1=-,S2=(a2-1),即a1+a2=(a2-1),得a2=. (Ⅱ)an=Sn-Sn-1=(an-1)-(an-1-1),得,所以{an}是首項為-,公比為-的等比數(shù)列. [專家把脈] 在利用an=Sn-Sn-1公式時,應考慮n≥2時才能成立. [對癥下藥] (Ⅰ)由S1=(a1-1), 得a1=(a1-1),∴a1=-.又

18、S2=(a2-1),即a1+a2=(a2-1),得a2=. (Ⅱ)當 n>1時,an=SnSn-1=(an-1)-(an-1-1),得=-,所以{an}是首項為-,公比為-的等比數(shù)列. 3.等比數(shù)列的四個數(shù)之和為16,中間兩個數(shù)之和為5,則該數(shù)列的公比q的取值為 ( ) A. 或4 B. 或C. 4或- D. 4或或或 [考場錯解] 設這四個數(shù)為,aq,aq3.由題意得由①得a=,代入②得q=或q2=2.q2=或q2=4,故所求的公比為或4.故應選A. [專家把脈] 上述解答設等比數(shù)列的公比為q2是不合理的.這相當于增加了四個數(shù)同號這個條件,而題設中的四個數(shù)不一

19、定同號.因此,產(chǎn)生了漏解現(xiàn)象. [對癥下藥]設這四個數(shù)為a,aq,aq2,aq3,則或-.因此,應選D. 4.設數(shù)列{an}的首項a1=a≠,且an+1= (Ⅰ)求a2,a3;(Ⅱ)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結論;(Ⅲ)求(b1+b2+b3+…+bn). [考場錯解] (Ⅰ)a2=a1+=a+,a3=a2=a; (Ⅱ)bn+1=a2n+1-. (Ⅲ)求(b1+b2+b3+…+bn)= =. [專家把脈]在求證bn是等比數(shù)列是時,式子中,an中n為偶數(shù)時, 是連續(xù)兩項,并不能得出. [對癥下藥] (Ⅰ)a2=a1+=a+,a3=a2=a+; (Ⅱ)∵a4=a3

20、+=a+,所以a5=a4=a+,所以b1=a1-=a-,b2=a3-=(a-),b3=a5-=(a-),猜想:{bn}是公比為的等比數(shù)列. 證明如下:因為bn+1=a2n+1-=a2n-=(a2n-1-)=bn,(n∈N*)所以{bn}是首項為a-,公比為的等比數(shù)列. (Ⅲ)求(b1+b2+b3+…+bn)= 專家會診1.證明等比數(shù)列時應運用定義證為非0常數(shù),而不能(此時n≥2).2.等比數(shù)列中q可以取負值.不能設公比為q2.3.會運用等比數(shù)列性質(zhì),“若m+n=p+k,則am·an=ap·ak”. 命題角度 4 等差與等比數(shù)列的綜合 1.(典型例題)已知數(shù)列

21、{an}的前n項和Sn=a[2-()n-1]-b[2-(n+1)()n-1](n=1,2,…),其中a,b是非零常數(shù),則存在數(shù)列{xn}、{yn}使得( ) A.an=xn+yn,其中{xn}為等差數(shù)列,{yn}為等比數(shù)列 B.a(chǎn)n=xn+yn,其中{xn}和{yn}都為等差數(shù)列 C.a(chǎn)n=xn·yn,其中{xn}為等差數(shù)列,{yn}為等比數(shù)列D.a(chǎn)n=xn·yn,其中{xn}和{yn}都為等比數(shù)列 ==1+q6-1=q6=,得=.所以12S3,S6,S12-S6成等比數(shù)列. (Ⅱ)解法:Tn=a1+2a4+3a7+…+na3a-2=a+2aq3+3aq6+

22、…+naq3(n-2), 即Tn=a+2·(-)a+3·(-)2a+…+n·(-)n-1a. ① ①×(-)3a得:-Tn=-a+2·(-)2a+3·(-)3a+…+n·(-)na ② ①-②有:Tn=a+(-)a+(-)2a+(-)3a+…(-)n-1a-n·(-)na =-n·(-)na=a-(+n)·(-)na.所以Tn=·(-)na. 3.如圖,△OBC的三個頂點坐標分別為(0,0)、(1,0)、(0,2),設P1為線段BC的中點,P2為線段CO的中點,

23、P3為線段OP1的中點,對于每一個正整數(shù)n,Pn+3為線段PnPn+1的中點,令Pn的坐標為(xn,yn),an=yn+yn+1+yn+2. (Ⅰ)求a1,a2,a3及an;(Ⅱ)證明yn+4=1-,n∈N*,(Ⅲ)若記bn=y4n+4-y4n,n∈N*,證明{bn}是等比數(shù)列. [考場錯解](1)∵y1=y2=y4=1,y3=,y5=,可求得a1=a2=a3=2,由此類推可求得an=2 (Ⅱ)將yn+yn+1+yn+2=2同除以2,得yn+4=∴yn+4=1-. (Ⅲ)bn+1=y4n+8-y4n+4=-(y4n+4-y4n)=- bn.∴=-.故{bn}是等比數(shù)列. [專家把脈]

24、第(Ⅰ)問題運用不完全歸納法求出an的通項.理由不充分,第(Ⅲ)問中=-.要考慮b1是否為0.即有意義才更完整. [對癥下藥] (Ⅰ)因為y1=y2=y4=1,y3=,y5=,所以a1=a2=a3=2.又由題意可知yn+3=.∴an+1=yn+1+yn+2+yn+3=yn+1+yn+2+=yn+yn+1+yn+2=an,∴{an}為常數(shù)列.∴an=a1=2,n∈N*. (Ⅱ)將等式y(tǒng)n+yn+1+yn+2=2兩邊除以2,得yn+=1,又∵yn+4=,∴yn+4=1-. (Ⅲ)∵bn+1=y4n+8-y4n+4=-=-(y4n+4-y4n)=- bn,又∵b1=y8-y4=-≠0,∴{b

25、n}是公比為-的等比數(shù)列. 4.在等差數(shù)列{an}中,公差d≠0,a2是a1與a4的等比中項.已知數(shù)列a1,a3,,…,akn,…成等比數(shù)列,求數(shù)列{kn}的通項kn. [考場錯解]∵an=a1+(n-1)d,=a1·a4 ∴(a1+d)2=a1(a1+3d).∴d=a1,∴an=nd.a1=d.a3=3d.∴=3=q.∴. ∴=q=3.∴{kn}是公比為3的等比數(shù)列.∴kn=1·3n-1=3n-1. [專家把脈]錯因在把k1當作數(shù)列{an}的首項.k1=1.而實際上k1=9. [對癥下藥]依題設得an=a1+(n-1)d,=a1a4,∴(a1+d)2=a1(a

26、1+3d),整理得d2=a1d, ∵d≠0,∴d=a1,得an=nd,所以,由已知得d,3d,k1d,k2d,…kndn…是等比數(shù)列.由d≠0,所以數(shù)列1,3, k1,k2,…kn,… 也是等比數(shù)列,首項為1,公比為q==3,由此得k1=9.等比數(shù)列{kn}的首項k1=9,公比q=3,所以kn=9×qn-1=3n+1(n=1,2,3,…),即得到數(shù)列{kn}的通項kn=3n+1. 專家會診1.賦值法在解等差、等比數(shù)列問題中是常用方法.從而求出系數(shù)的值及從中找出規(guī)律.2.等比數(shù)列中應注意考慮公比等于1的特殊情況,等比數(shù)列中的公差為0的特殊情況在解題時往往被忽視.3在等差數(shù)列與等比數(shù)

27、列中,經(jīng)常要根據(jù)條件列方程(組)求解.要注意常兩種情形的不同之處. 命題角度5 數(shù)列與解析幾何、函數(shù)、不等式的綜合 1.已知定義在R上的函數(shù)f(x)和數(shù)列{an}滿足下列條件:a1=a,an=f(aa-1)(n=2,3,4,…),a2≠a1,f(an)-f(an-1)=k(an-an-1)(n=2,3,4,…),其中a為常數(shù),k為非零常數(shù).(Ⅰ)令bn=aa+1-an(n∈N*),證明數(shù)列{bn}是等比數(shù)列;(Ⅱ)求數(shù)列{an}的通項公式;(Ⅲ)當|k|<1時,求 [考場錯解](Ⅰ)證明:由b1=a2-a1≠0,可得:b2=a3-a2=f(a2)-f(a1)=k(a2-a1)≠0.由數(shù)

28、學歸納法可證bn=an+1-an≠0(n∈N*).由題設條件,當n≥2時=k 故數(shù)列{bn}是公比為k的等比數(shù)列. (Ⅱ)由(Ⅰ)知bn=kn-1(a2-a1)(n∈N*)b1+b2+…+bn-1=(a2-a1). (n≥2) 而b1+b2+…+bn-1=a2-a1+a3-a2+…+an-an-1=an-a1(n≥2)∴an-a1=(a2-a1)(n≥2) [考場錯解]證明:設點Pn的坐標是(xn,yn),由已知條件得點Qn、Pn+1的坐標分別是: .由Pn+1在直線l1上,得= kxn+1+1-k.所以(xn-1)=k(xn+1-1). 即xn+1-1=(xn-1

29、),n∈N*. (Ⅱ)由(Ⅰ)知,故{xn-1}是等比數(shù)列,且首項x1-1=-,公比為.從而求得xn=1-2×()n,n∈N*. [專家把脈] (Ⅱ)問中對于xn+1-1=(xn-1)先應考慮xn-1能否為0,繼而可求. [對癥下藥](Ⅰ)同錯解中(Ⅰ). (Ⅱ)解法:由題設知x1=1-,x1-1=-≠0,又由(Ⅰ)知xn+1-1=(xn-1), 所以數(shù)列{xn-1}是首項為x1-1,公比為的等比數(shù)列.從而xn-1=-×()n-1,即xn=1-2×()n,n∈N*. (Ⅲ)解法:由得點P的坐標為(1,1).所以2|PPn|2=2(xn-1)2+

30、2(kxn+1-k-1)2=8×()2n+2(2)2n-2,4k2|PP1|2+5=4k2[(1--1)2(0-1)2]+5=4k2+9. [考場錯解](Ⅰ)bn=|an-|,又∵an=1+,an+1=(n≥2),∴a2=2,a3=,a4=2.…∴an≥1.bn==…由疊代法.bn≤. (Ⅱ)Sn=b1+b2+…+bn<(-1)+<. [專家把脈]運用疊代法時并不能化簡成. [專家會診]函數(shù)、數(shù)列、解析幾何三者的綜合,展示了知識的交匯性,方法的靈活性.因此解此類題目應充分運用函數(shù)與數(shù)列的聯(lián)系,即數(shù)列是一種特殊函數(shù),以及解析幾何中方程與函數(shù)、數(shù)列的關系來解題.而數(shù)列與不等式

31、的綜合更顯出問題的綜合性. 命題角度6 數(shù)列的應用 1.某企業(yè)20典型例題)若an=n2+An,且數(shù)列{an}為遞增數(shù)列,則實數(shù)的取值范圍是____________. [考場錯解] ∵(n,an)(nN+)是函數(shù)f(x)=x2+λx圖象上的點,且數(shù)列{an}為遞增數(shù)列, 只需-≤1,即λ≥-2,∴λ的取值范圍是[-2,+∞]. [專家把脈] 忽視了數(shù)列的離散型特征.數(shù)列{an}為遞增數(shù)列,只要求滿足a1<a2<…<an<… [對癥下藥] ∵數(shù)列{an}是遞增數(shù)列,且an=n2+λn,其對稱軸x=-既可以不超過直線x=1,也可以在 1&

32、lt;x<之間,故-<,即λ>-3. ∴λ的取值范圍是(-3,+∞).(答案不唯一,λ>-3的所有實數(shù)均可). 4.(典型例題)自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強度對魚群總量的影響.用xn表示某魚群在第n年年初的總量,n∈N+,且x1>0.不考慮其他因素,設在第n年內(nèi)魚群的繁殖量及捕撈量都與Xn成正比,死亡量與x2n成正比,這些比例系數(shù)依次為正常數(shù)a,b,C,(Ⅰ)求xn+1與xn的關系式;(Ⅱ)猜測:當且僅當x1,a,b,c滿足什么條件時,每年年初魚群的總量保持不變?(不要求證明) (Ⅲ)設a=2,c=1,

33、為保證對任意x1∈(0,2),都有xn>0,n∈N+,則捕撈強度b的最大允許值是多少?證明你的結論. [考場錯解] (1)xn+1 -xn=axn-bxn-cx2n (axn,bxn,cx2n分別為繁殖量、捕撈量,死亡量) (Ⅱ)xn=x1(n∈N+).由(Ⅰ)式得xn(a-b-cxn)=0. ∴x1= (Ⅲ)∵x1 ∈(0,2).a(chǎn)=2.c=1.∴0<2-b<2 0<b<2. 故b最大值為2. [專家把脈] (Ⅲ)問中使用了第(Ⅱ)問的結論,而第(Ⅲ)中并不一定每年年初魚群的總量不變. 在今后的若干年內(nèi),該市每年新建住

34、房面積平均比上一年增長8%.另外,每年新建住房中,中低價房的面積均比上一年增加50萬平方米.那么,到哪一年底,(1)該市歷年所建中低價房的累計面積(以2004年為累計的第一年)將首次不少于4750萬平方米?(2)當年建造的中低價房的面積占該年建造住房面積的比例首次大于85%? [考場錯解] (1){an}是等差數(shù)列 an是中低價房面積.a(chǎn)1=250,d=50.∴Sn=25n2+225n由25n2+ 225n ≥4750即n≥10. (2)設幾年后新建住房面積S為:400(1+8%)n. 85%<25n2+225n. [專家把脈] (2)問中應是第幾年的中低價房的面積而不是

35、累計面積. [對癥下藥] (1)設中低價房面積形成數(shù)列{an},由題意可知{an}是等差數(shù)列,其中a1=250,d=50,則Sn= 250n+×50=25n2+225n, 令25n2+225n≥4750,即n2+9n-190≥0,而n是正整數(shù),∴n≥10.到 2013年底,該市歷年所建中低價房的累計面積將首次不少于4750萬平方米.設新建住房面積形成數(shù)列{bn},由題意可知 {bn}是等比數(shù)列,其中b1=400,q=1.08,則bn=400·(1.08)n-1·0.85.由題意可知an>0.85bn,有250+ (n-1)·50>40

36、0·(1.08)n-1·0.85.由計算器解得滿足上述不等式的最小正整數(shù)n=6.到2009年底,當年建造的中低價房的面積占該年建造住房面積的比例首次大于85%. 四、典型習題導練 1、各項都為正數(shù)的數(shù)列滿足。(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和。 ,,.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)在數(shù)列中,對任意的正整數(shù), 都成立,設為數(shù)列的前項和試比較與的大小. 6、已知數(shù)列滿足:且()(Ⅰ)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(Ⅱ)證明:()。 7、已知等差數(shù)列滿足,數(shù)列的前項和為.①求數(shù)列和的通項公式;②解不等式. 8、數(shù)列{}的前n項和記為,點在

37、曲線上(). (Ⅰ)求數(shù)列{}的通項公式;(Ⅱ)設,求數(shù)列{}的前n項和的值. 9、在等差數(shù)列{an}中,滿足3a5=5a8,Sn是數(shù)列{an}的前n項和.(Ⅰ)若a1>0,當Sn取得最大值時,求n的值;(Ⅱ)若a1=-46,記bn=,求bn的最小值. 10、數(shù)列的前n項和記為Sn,,點(Sn,)在直線上,n∈N*.(Ⅰ)若數(shù)列是等比數(shù)列,求實數(shù)t的值;(Ⅱ)設,在(1)的條件下,求數(shù)列的前n項和;(Ⅲ)設各項均不為0的數(shù)列中,所有滿足的整數(shù)i的個數(shù)稱為這個數(shù)列的“積異號數(shù)”,令(),在(2)的條件下,求數(shù)列的“積異號數(shù)” 11、定義數(shù)列: ,且對任意正整數(shù),有. (Ⅰ)求數(shù)列的通項公

38、式與前項和;(Ⅱ)問是否存在正整數(shù),使得?若存在,則求出所有的正整數(shù)對;若不存在,則加以證明. 12、在數(shù)列中,已知,,且 (Ⅰ)記,求證:數(shù)列是等差數(shù)列;(Ⅱ)求的通項公式;(Ⅲ)對, 是否總使得?若存在,求出的值,若不存在,請說明理由。 13、設數(shù)列滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:對于一切正整數(shù),. 16、已知數(shù)列、滿足,,數(shù)列的前項和為.(Ⅰ)求證:數(shù)列為等差數(shù)列;(Ⅱ)設,求證:;(Ⅲ)求證:對任意的都有成立. 17、在數(shù)列中,已知, (Ⅰ)求數(shù)列的通項公式; (Ⅱ)若(為非零常數(shù)),問是否存在整數(shù),使得對任意都有?若存在,求出的值;若不存在,請說明理由。 18、數(shù)列的前項和為,,且對任意正整數(shù),點在直線上. (Ⅰ) 求數(shù)列的通項公式;(Ⅱ)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,則說明理由. (Ⅲ)已知數(shù)列,,,求證:. 19、已知數(shù)列{an}各項均為正數(shù),Sn為其前n項和,對于,總有成等差數(shù)列.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!