《人教版 小學(xué)9年級(jí) 數(shù)學(xué)上冊(cè) 教案23.1 圖形的旋轉(zhuǎn)1》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版 小學(xué)9年級(jí) 數(shù)學(xué)上冊(cè) 教案23.1 圖形的旋轉(zhuǎn)1(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、人教版初中數(shù)學(xué)·2019學(xué)年
教學(xué)時(shí)間
課題
23.1 圖形的旋轉(zhuǎn)(1)
課型
新授課
教
學(xué)
目
標(biāo)
知 識(shí)
和
能 力
了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)的概念及其應(yīng)用它們解決一些實(shí)際問題.
過 程
和
方 法
通過復(fù)習(xí)平移、軸對(duì)稱的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實(shí)際問題.
情 感
態(tài) 度
價(jià)值觀
讓學(xué)生經(jīng)歷觀察、操作等過程,了解圖形旋轉(zhuǎn)的概念,激發(fā)學(xué)習(xí)熱情.
教學(xué)重點(diǎn)
旋轉(zhuǎn)及對(duì)應(yīng)點(diǎn)的有關(guān)概念及其應(yīng)用.
教學(xué)難點(diǎn)
從活生生的數(shù)學(xué)中抽出概念.
教學(xué)準(zhǔn)備
教師
多媒體
2、課件
學(xué)生
“五個(gè)一”
課 堂 教 學(xué) 程 序 設(shè) 計(jì)
設(shè)計(jì)意圖
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請(qǐng)同學(xué)們完成下面各題.
1.將如圖所示的四邊形ABCD平移,使點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,作出平移后的圖形.
2.如圖,已知△ABC和直線L,請(qǐng)你畫出△ABC關(guān)于L的對(duì)稱圖形△A′B′C′.
3.圓是軸對(duì)稱圖形嗎?等腰三角形呢?你還能指出其它的嗎?
(口述)老師點(diǎn)評(píng)并總結(jié):
(1)平移的有關(guān)概念及性質(zhì).
(2)如何畫一個(gè)圖形關(guān)于一條直線(對(duì)稱軸)的對(duì)稱圖形并口述它既有的一些性質(zhì).
(3)什么叫軸對(duì)稱圖形?
3、 二、探索新知
我們前面已經(jīng)復(fù)習(xí)平移等有關(guān)內(nèi)容,生活中是否還有其它運(yùn)動(dòng)變化呢?回答是肯定的,下面我們就來研究.
1.請(qǐng)同學(xué)們看講臺(tái)上的大時(shí)鐘,有什么在不停地轉(zhuǎn)動(dòng)?旋繞什么點(diǎn)呢?從現(xiàn)在到下課時(shí)鐘轉(zhuǎn)了多少度?分針轉(zhuǎn)了多少度?秒針轉(zhuǎn)了多少度?
(口答)老師點(diǎn)評(píng):時(shí)針、分針、秒針在不停地轉(zhuǎn)動(dòng),它們都繞時(shí)針的中心.如果從現(xiàn)在到下課時(shí)針轉(zhuǎn)了_______度,分針轉(zhuǎn)了_______度,秒針轉(zhuǎn)了______度.
2.再看我自制的好像風(fēng)車風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動(dòng).如何轉(zhuǎn)到新的位置?(老師點(diǎn)評(píng)略)
3.第1、2兩題有什么共同特點(diǎn)呢?
共同特點(diǎn)是如
4、果我們把時(shí)針、風(fēng)車風(fēng)輪當(dāng)成一個(gè)圖形,那么這些圖形都可以繞著某一固定點(diǎn)轉(zhuǎn)動(dòng)一定的角度.
像這樣,把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角.
如果圖形上的點(diǎn)P經(jīng)過旋轉(zhuǎn)變?yōu)辄c(diǎn)P′,那么這兩個(gè)點(diǎn)叫做這個(gè)旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn).
下面我們來運(yùn)用這些概念來解決一些問題.
例1.如圖,如果把鐘表的指針看做三角形OAB,它繞O點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到△OEF,在這個(gè)旋轉(zhuǎn)過程中:
(1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?
(2)經(jīng)過旋轉(zhuǎn),點(diǎn)A、B分別移動(dòng)到什么位置?
解:(1)旋轉(zhuǎn)中心是O,∠AOE、∠BOF等都是旋
5、轉(zhuǎn)角.
(2)經(jīng)過旋轉(zhuǎn),點(diǎn)A和點(diǎn)B分別移動(dòng)到點(diǎn)E和點(diǎn)F的位置.
例2.(學(xué)生活動(dòng))如圖,四邊形ABCD、四邊形EFGH都是邊長(zhǎng)為1的正方形.
(1)這個(gè)圖案可以看做是哪個(gè)“基本圖案”通過旋轉(zhuǎn)得到的?
(2)請(qǐng)畫出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.
(3)指出,經(jīng)過旋轉(zhuǎn),點(diǎn)A、B、C、D分別移到什么位置?
(老師點(diǎn)評(píng))
(1)可以看做是由正方形ABCD的基本圖案通過旋轉(zhuǎn)而得到的.(2)畫圖略.(3)點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)D移到的位置是點(diǎn)E、點(diǎn)F、點(diǎn)G、點(diǎn)H.
最后強(qiáng)調(diào),這個(gè)旋轉(zhuǎn)中心是固定的,即正方形對(duì)角線的交點(diǎn),但旋轉(zhuǎn)角和對(duì)應(yīng)點(diǎn)都是不唯一的.
6、三、鞏固練習(xí)
教材P56 練習(xí)1、2、3.
四、應(yīng)用拓展
例3.兩個(gè)邊長(zhǎng)為1的正方形,如圖所示,讓一個(gè)正方形的頂點(diǎn)與另一個(gè)正方形中心重合,不難知道重合部分的面積為,現(xiàn)把其中一個(gè)正方形固定不動(dòng),另一個(gè)正方形繞其中心旋轉(zhuǎn),問在旋轉(zhuǎn)過程中,兩個(gè)正方形重疊部分面積是否發(fā)生變化?說明理由.
分析:設(shè)任轉(zhuǎn)一角度,如圖中的虛線部分,要說明旋轉(zhuǎn)后正方形重疊部分面積不變,只要說明S△OEE`=S△ODD`,那么只要說明△OEF′≌△ODD′.
解:面積不變.
理由:設(shè)任轉(zhuǎn)一角度,如圖所示.
在Rt△ODD′和Rt△OEE′中
∠ODD′=∠OEE′=90°
∠DOD′=∠EOE′=90°-∠BOE
OD=OD
∴△ODD′≌△OEE′
∴S△ODD`=S△OEE`
∴S四邊形OE`BD`=S正方形OEBD=
五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))
本節(jié)課要掌握:
1.旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角的概念.
2.旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn)及其它們的應(yīng)用.
作業(yè)
設(shè)計(jì)
必做
教材P59:1、2、3.
選做
P60:6
教
學(xué)
反
思