高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題五 立體幾何 專題能力訓(xùn)練14 Word版含答案
《高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題五 立體幾何 專題能力訓(xùn)練14 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題五 立體幾何 專題能力訓(xùn)練14 Word版含答案(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 專題能力訓(xùn)練14 空間中的平行與垂直 能力突破訓(xùn)練 1.如圖,O為正方體ABCD-A1B1C1D1的底面ABCD的中心,則下列直線中與B1O垂直的是( ) A.A1D B.AA1 C.A1D1 D.A1C1 2.如圖,在正方形ABCD中,E,F分別是BC,CD的中點(diǎn),沿AE,AF,EF把正方形折成一個四面體,使B,C,D三點(diǎn)重合,重合后的點(diǎn)記為P,點(diǎn)P在△AEF內(nèi)的射影為O.則下列說法正確的是( ) A.O是△AEF的垂心 B.O是△AEF
2、的內(nèi)心 C.O是△AEF的外心 D.O是△AEF的重心 (第1題圖) (第2題圖) 3.α,β是兩個平面,m,n是兩條直線,有下列四個命題: ①如果m⊥n,m⊥α,n∥β,那么α⊥β. ②如果m⊥α,n∥α,那么m⊥n. ③如果α∥β,m?α,那么m∥β. ④如果m∥n,α∥β,那么m與α所成的角和n與β所成的角相等. 其中正確的命題有 .(填寫所有正確命題的編號) 4.已知正四棱錐S-ABCD的底面邊長為2,高為2,E是邊BC的中點(diǎn),動點(diǎn)P在表面上運(yùn)動,并且總保持PE⊥AC,則動點(diǎn)P的軌跡的周長為 . 5.下列命題中正確的是 .(填上你
3、認(rèn)為正確的所有命題的序號) ①空間中三個平面α,β,γ,若α⊥β,γ⊥β,則α∥γ; ②若a,b,c為三條兩兩異面的直線,則存在無數(shù)條直線與a,b,c都相交; ③若球O與棱長為a的正四面體各面都相切,則該球的表面積為π6a2; ④在三棱錐P-ABC中,若PA⊥BC,PB⊥AC,則PC⊥AB. 6. 在正三棱柱A1B1C1-ABC中,點(diǎn)D是BC的中點(diǎn),BC=2BB1.設(shè)B1D∩BC1=F. 求證:(1)A1C∥平面AB1D; (2)BC1⊥平面AB1D. 7. 如圖,在四棱錐P-ABCD中,側(cè)面PAD是邊長為2的正三角形,且與底面垂直,
4、底面ABCD是∠ABC=60的菱形,M為PC的中點(diǎn). (1)求證:PC⊥AD; (2)證明在PB上存在一點(diǎn)Q,使得A,Q,M,D四點(diǎn)共面; (3)求點(diǎn)D到平面PAM的距離. 8. (20xx山東青島統(tǒng)一質(zhì)檢)如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=3,F是棱PA上的一個動點(diǎn),E為PD的中點(diǎn). (1)求證:平面BDF⊥平面PCF; (2)若AF=1,求證:CE∥平面BDF. 思維提升訓(xùn)練 9.平面α過正方體ABCD-A1B1C1D1的頂點(diǎn)A,α∥平
5、面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為( ) A.32 B.22 C.33 D.13 10. 如圖,在側(cè)棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=2,AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F是平面B1C1E與直線AA1的交點(diǎn). (1)證明:①EF∥A1D1;②BA1⊥平面B1C1EF; (2)求BC1與平面B1C1EF所成角的正弦值. 11.如圖,在長方形ABCD中,AB=2,BC=1,E為CD的中點(diǎn),F為AE的中點(diǎn).現(xiàn)在沿A
6、E將△ADE向上折起,在折起的圖形中解答下列問題: (1)在線段AB上是否存在一點(diǎn)K,使BC∥平面DFK?若存在,請證明你的結(jié)論;若不存在,請說明理由; (2)若平面ADE⊥平面ABCE,求證:平面BDE⊥平面ADE. 12.已知正三棱柱ABC-A1B1C1中,AB=2,AA1=3,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段AA1上. (1)當(dāng)AE∶EA1=1∶2時,求證:DE⊥BC1; (2)是否存在點(diǎn)E,使三棱錐C1-BDE的體積恰為三棱柱ABC-A1B1C1體積的13?若存在,求AE的長,若不存在,請說明理由.
7、 13.如圖,在四邊形ABCD中(如圖①),E是BC的中點(diǎn),DB=2,DC=1,BC=5,AB=AD=2.將△ABD(如圖①)沿直線BD折起,使二面角A-BD-C為60(如圖②). (1)求證:AE⊥平面BDC; (2)求異面直線AB與CD所成角的余弦值; (3)求點(diǎn)B到平面ACD的距離. 參考答案 專題能力訓(xùn)練14 空間中的平行與垂直 能力突破訓(xùn)練 1.D 解析易知A1C1⊥平面BB1D1D. ∵B1O?平面BB1D1D,∴A1C1⊥B1O,故選D. 2.A 解析如圖,易知PA,PE,PF兩兩垂
8、直, ∴PA⊥平面PEF,從而PA⊥EF, 而PO⊥平面AEF,則PO⊥EF, ∴EF⊥平面PAO,∴EF⊥AO. 同理可知AE⊥FO,AF⊥EO, ∴O為△AEF的垂心. 3.②③④ 解析對于①,若m⊥n,m⊥α,n∥β,則α,β的位置關(guān)系無法確定,故錯誤;對于②,因為n∥α,所以過直線n作平面γ與平面α相交于直線c,則n∥c.因為m⊥α,所以m⊥c,所以m⊥n,故②正確;對于③,由兩個平面平行的性質(zhì)可知正確;對于④,由線面所成角的定義和等角定理可知其正確,故正確的命題有②③④. 4.2+6 解析 如圖,取CD的中點(diǎn)F,SC的中點(diǎn)G,連接EF,EG,FG. 設(shè)EF交
9、AC于點(diǎn)H,連接GH,易知AC⊥EF. 又GH∥SO, ∴GH⊥平面ABCD, ∴AC⊥GH. 又GH∩EF=H,∴AC⊥平面EFG. 故點(diǎn)P的軌跡是△EFG,其周長為2+6. 5.②③④ 解析①中也可以α與γ相交;②作平面與a,b,c都相交;③中可得球的半徑為r=612a;④中由PA⊥BC,PB⊥AC得點(diǎn)P在底面△ABC的射影為△ABC的垂心,故PC⊥AB. 6.證明(1)連接A1B,設(shè)A1B交AB1于點(diǎn)E,連接DE. ∵點(diǎn)D是BC的中點(diǎn),點(diǎn)E是A1B的中點(diǎn), ∴DE∥A1C. ∵A1C?平面AB1D,DE?平面AB1D, ∴A1C∥平面AB1D. (2)∵△AB
10、C是正三角形,點(diǎn)D是BC的中點(diǎn), ∴AD⊥BC. ∵平面ABC⊥平面B1BCC1,平面ABC∩平面B1BCC1=BC,AD?平面ABC, ∴AD⊥平面B1BCC1. ∵BC1?平面B1BCC1,∴AD⊥BC1. ∵點(diǎn)D是BC的中點(diǎn),BC=2BB1, ∴BD=22BB1. ∵BDBB1=CC1BC=22,∴Rt△B1BD∽Rt△BCC1, ∴∠BDB1=∠BC1C. ∴∠FBD+∠BDF=∠C1BC+∠BC1C=90. ∴BC1⊥B1D. ∵B1D∩AD=D,∴BC1⊥平面AB1D. 7.(1)證法一取AD的中點(diǎn)O,連接OP,OC,AC,依題意可知△PAD,△ACD均為正
11、三角形, 所以O(shè)C⊥AD,OP⊥AD. 又OC∩OP=O,OC?平面POC,OP?平面POC, 所以AD⊥平面POC. 又PC?平面POC,所以PC⊥AD. 證法二連接AC,依題意可知△PAD,△ACD均為正三角形. 因為M為PC的中點(diǎn),所以AM⊥PC,DM⊥PC. 又AM∩DM=M,AM?平面AMD,DM?平面AMD, 所以PC⊥平面AMD. 因為AD?平面AMD,所以PC⊥AD. (2)證明當(dāng)點(diǎn)Q為棱PB的中點(diǎn)時,A,Q,M,D四點(diǎn)共面,證明如下: 取棱PB的中點(diǎn)Q,連接QM,QA. 因為M為PC的中點(diǎn),所以QM∥BC. 在菱形ABCD中,AD∥BC,所以QM
12、∥AD,所以A,Q,M,D四點(diǎn)共面. (3)解點(diǎn)D到平面PAM的距離即點(diǎn)D到平面PAC的距離. 由(1)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD, 所以PO⊥平面ABCD,即PO為三棱錐P-ACD的高. 在Rt△POC中,PO=OC=3,PC=6, 在△PAC中,PA=AC=2,PC=6,邊PC上的高AM=PA2-PM2=102, 所以△PAC的面積S△PAC=12PCAM=126102=152. 設(shè)點(diǎn)D到平面PAC的距離為h,由VD-PAC=VP-ACD,得13S△PACh=13S△ACDPO. 因為S△ACD=3422=3
13、,所以13152h=1333,解得h=2155, 所以點(diǎn)D到平面PAM的距離為2155. 8.證明(1)連接AC交BD于點(diǎn)O. ∵底面ABCD是菱形,∴BD⊥AC. ∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA. ∵PA∩AC=A,PA?平面PAC,AC?平面PAC, ∴BD⊥平面PAC, ∴BD⊥平面PCF. ∵BD?平面BDF, ∴平面BDF⊥平面PCF. (2)過點(diǎn)E作EG∥FD交AP于點(diǎn)G,連接CG,連接FO. ∵EG∥FD,EG?平面BDF,FD?平面BDF.∴EG∥平面BDF. ∵底面ABCD是菱形,∴O是AC的中點(diǎn). ∵E為PD的中點(diǎn),∴G
14、為PF的中點(diǎn). ∵AF=1,PA=3, ∴F為AG的中點(diǎn),∴OF∥CG. ∵CG?平面BDF,OF?平面BDF, ∴CG∥平面BDF. 又EG∩CG=G,EG,CG?平面CGE, ∴平面CGE∥平面BDF. 又CE?平面CGE,∴CE∥平面BDF. 思維提升訓(xùn)練 9.A 解析(方法一)∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1, ∴m∥B1D1. ∵α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1, ∴n∥CD1.
15、 ∴B1D1,CD1所成的角等于m,n所成的角, 即∠B1D1C等于m,n所成的角. ∵△B1D1C為正三角形,∴∠B1D1C=60, ∴m,n所成的角的正弦值為32. (方法二)由題意畫出圖形如圖,將正方體ABCD-A1B1C1D1平移, 補(bǔ)形為兩個全等的正方體如圖,易證平面AEF∥平面CB1D1, ∴平面AEF即為平面α, m即為AE,n即為AF,∴AE與AF所成的角即為m與n所成的角. ∵△AEF是正三角形,∴∠EAF=60, 故m,n所成角的正弦值為32. 10.(1)證明①因為C1B1∥A1D1,C1B1?平面ADD1A1,所以C1B1∥平面ADD1A1.
16、 因為平面B1C1EF∩平面ADD1A1=EF, 所以C1B1∥EF.所以A1D1∥EF. ②因為BB1⊥平面A1B1C1D1,所以BB1⊥B1C1. 因為B1C1⊥B1A1,所以B1C1⊥平面ABB1A1, 所以B1C1⊥BA1. 在矩形ABB1A1中,F是AA1的中點(diǎn), 即tan∠A1B1F=tan∠AA1B=22,即∠A1B1F=∠AA1B.故BA1⊥B1F. 又B1F∩B1C1=B1,所以BA1⊥平面B1C1EF. (2)解設(shè)BA1與B1F的交點(diǎn)為H,連接C1H(如圖). 由(1)知BA1⊥平面B1C1EF, 所以∠BC1H是BC1與平面B1C1EF所成的角.
17、 在矩形ABB1A1中,AB=2,AA1=2,得BH=46. 在Rt△BHC1中,BC1=25,BH=46, 得sin∠BC1H=BHBC1=3015. 所以BC1與平面B1C1EF所成角的正弦值是3015. 11. (1)解線段AB上存在一點(diǎn)K,且當(dāng)AK=14AB時,BC∥平面DFK. 證明如下:設(shè)H為AB的中點(diǎn),連接EH,則BC∥EH. 又因為AK=14AB,F為AE的中點(diǎn),所以KF∥EH,所以KF∥BC. 因為KF?平面DFK,BC?平面DFK, 所以BC∥平面DFK. (2)證明因為F為AE的中點(diǎn),DA=DE=1, 所以DF⊥AE.因為平面ADE⊥平面ABCE
18、, 所以DF⊥平面ABCE. 因為BE?平面ABCE,所以DF⊥BE. 又因為在折起前的圖形中E為CD的中點(diǎn),AB=2,BC=1, 所以在折起后的圖形中AE=BE=2, 從而AE2+BE2=4=AB2,所以AE⊥BE. 因為AE∩DF=F,所以BE⊥平面ADE. 因為BE?平面BDE,所以平面BDE⊥平面ADE. 12.(1)證明因為三棱柱ABC-A1B1C1為正三棱柱,所以△ABC是正三角形. 因為D是AC的中點(diǎn),所以BD⊥AC. 又平面ABC⊥平面CAA1C1,所以BD⊥DE. 因為AE∶EA1=1∶2,AB=2,AA1=3, 所以AE=33,AD=1, 所以在R
19、t△ADE中,∠ADE=30. 在Rt△DCC1中,∠C1DC=60, 所以∠EDC1=90,即DE⊥DC1. 因為C1D∩BD=D,所以DE⊥平面BC1D, 所以DE⊥BC1. (2)解假設(shè)存在點(diǎn)E滿足題意. 設(shè)AE=h,則A1E=3-h, 所以S△DEC1=S四邊形AA1C1C-S△AED-S△DCC1-S△EA1C1=23-12h-(3-h)-32=32+12h. 因為BD⊥平面ACC1A1, 所以VC1-BDE=VB-C1DE=1332+12h3=12+36h,又V棱柱=12233=3, 所以12+36h=1,解得h=3≤3, 故存在點(diǎn)E,當(dāng)AE=3,即E與A1重
20、合時,三棱錐C1-BDE的體積恰為三棱柱ABC-A1B1C1體積的13. 13. (1)證明如圖,取BD的中點(diǎn)M,連接AM,ME. ∵AB=AD=2,DB=2, ∴AM⊥BD. ∵DB=2,DC=1,BC=5滿足DB2+DC2=BC2, ∴△BCD是以BC為斜邊的直角三角形,BD⊥DC, ∵E是BC的中點(diǎn), ∴ME為△BCD的中位線,ME12CD, ∴ME⊥BD,ME=12, ∴∠AME是二面角A-BD-C的平面角, ∴∠AME=60. ∵AM⊥BD,ME⊥BD,且AM,ME是平面AME內(nèi)兩相交于M的直線,∴BD⊥平面AEM. ∵AE?平面AEM,∴BD⊥AE.
21、 ∵△ABD為等腰直角三角形, ∴AM=12BD=1.在△AEM中, ∵AE2=AM2+ME2-2AMMEcos∠AME=1+14-2112cos60=34,∴AE=32, ∴AE2+ME2=1=AM2,∴AE⊥ME. ∵BD∩ME=M,BD?平面BDC,ME?平面BDC,∴AE⊥平面BDC. (2)解取AD的中點(diǎn)N,連接MN,則MN是△ABD的中位線,MN∥AB. 又ME∥CD,∴直線AB與CD所成角θ等于MN與ME所成的角,即∠EMN或其補(bǔ)角. AE⊥平面BCD,DE?平面BCD, ∴AE⊥DE.∵N為Rt△AED斜邊的中點(diǎn), ∴NE=12AD=22,MN=12AB=
22、22,ME=12, ∴cosθ=|cos∠EMN|=MN2+ME2-NE22MNME=24+14-2422212=24. (3)解記點(diǎn)B到平面ACD的距離為d,則三棱錐B-ACD的體積VB-ACD=13dS△ACD. 又由(1)知AE是三棱錐A-BCD的高,BD⊥CD, ∴VB-ACD=VA-BCD=13AES△BCD=13321221=36. ∵E為BC中點(diǎn),AE⊥BC,∴AC=AB=2. 又DC=1,AD=2,△ACD為等腰三角形, S△ACD=12DCAD2-12CD2=121(2)2-122=74, ∴點(diǎn)B到平面ACD的距離d=3VB-ACDS△ACD=33674=2217.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案