《寧夏頂級(jí)名校2021-2022學(xué)年高三上學(xué)期第二次月考 數(shù)學(xué)(理)試題【含答案】》由會(huì)員分享,可在線閱讀,更多相關(guān)《寧夏頂級(jí)名校2021-2022學(xué)年高三上學(xué)期第二次月考 數(shù)學(xué)(理)試題【含答案】(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 2022屆高三年級(jí)第二次月考
理 科 數(shù) 學(xué)
注意事項(xiàng):
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。
2.作答時(shí),務(wù)必將答案寫(xiě)在答題卡上。寫(xiě)在本試卷及草稿紙上無(wú)效。
3.考試結(jié)束后,將本試卷和答題卡一并交回。
一、選擇題:本大題共12小題,每小題5分,滿分60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1.集合的真子集的個(gè)數(shù)是
A.7 B.3 C.4 D.8
2.已知為虛數(shù)單位,復(fù)數(shù),則的虛部為
A. B. C. D.
3.已知命題﹔命題﹐,則下列命題中為
2、真命題的是
A. B. C. D.
4.若是上周期為3的偶函數(shù),且當(dāng)時(shí),,則
A. B.2 C. D.
5.?dāng)?shù)學(xué)猜想是推動(dòng)數(shù)學(xué)理論發(fā)展的強(qiáng)大動(dòng)力,是
數(shù)學(xué)發(fā)展中最活躍?最主動(dòng)?最積極的因素之一,
是人類理性中最富有創(chuàng)造性的部分.1927年德
國(guó)的一個(gè)大學(xué)生考拉茲提出一個(gè)猜想:對(duì)于每
一個(gè)正整數(shù),如果它是奇數(shù),對(duì)它乘3再加1,
如果它是偶數(shù),對(duì)它除以2,這樣循環(huán),最終
結(jié)果都能得到1.如圖是根據(jù)這個(gè)猜想設(shè)計(jì)的程
序框圖,則輸出的i為
A.4 B.5 C.6 D.7
6.的展開(kāi)式中的常數(shù)項(xiàng)為
A.8 B.28 C.56 D.70
7.有12名同學(xué)合影,
3、站成了前排4人后排8人,現(xiàn)攝影師要從后排8人中抽2人調(diào)整到前排,若其他人的相對(duì)順序不變,則不同調(diào)整方法的種數(shù)是
A.168 B.260 C.840 D.560
8.袋子中有四個(gè)小球,分別寫(xiě)有“和、平、世、界”四個(gè)字,有放回地從中任取一個(gè)小球,直到“和”“平”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“和、平、世、界”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下24個(gè)隨機(jī)數(shù)組:
232 321 230 023 123 021 132 220 011 203
4、 331 100
231 130 133 231 031 320 122 103 233 221 020 132
由此可以估計(jì),恰好第三次就停止的概率為
A. B. C. D.
9.
A. B. C. D.
10.把不超過(guò)實(shí)數(shù)x的最大整數(shù)記為[x],則函數(shù)f(x)=[x]稱作取整函數(shù),又叫高斯函數(shù),在[2,5]上任取x,則[x]=[]的概率為
A. B. C. D.
11.已知定義域?yàn)榈暮瘮?shù)滿足,且,則下列結(jié)論一定正確的是( )
A. B.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱
C.函數(shù)是奇函數(shù) D.
12.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),,
5、若方程有三個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是
A. B. C. D.
二、填空題:(本大題共4小題,每小題5分,共20分)
13.已知函數(shù),則在處的切線方程是________.
14.在一個(gè)不透明的袋中裝有5個(gè)白球,3個(gè)紅球(除顏色外其他均相同),從中任意取出2個(gè)小球,記事件為“取出的球中有紅色小球”,事件為“取出的2個(gè)小球均是紅球”,則__________.
15.一道四個(gè)選項(xiàng)的選擇題,趙、錢(qián)、孫、李各選了一個(gè)選項(xiàng),且選的恰好各不相同.
趙說(shuō):“我選的是A.”
錢(qián)說(shuō):“我選的是B,C,D之一.”
孫說(shuō):“我選的是C.”
李說(shuō):“我選的是D.”
已知四人中只有一人說(shuō)了假話,
6、則說(shuō)假話的人可能是__________.
16.已知函數(shù).下面四個(gè)結(jié)論
①是奇函數(shù) ②在上為增函數(shù)
③若,則 ④對(duì)任意實(shí)數(shù)x恒成立
其中正確的是__________.
三、解答題:共70分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.第17~21題為必考題,每個(gè)試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。
(一)必考題:共60分
17. (12分)
設(shè),其中為實(shí)數(shù).
(1)設(shè)集合,集合,若,求實(shí)數(shù)的取值范圍;
(2)若集合中的元素有且僅有2個(gè),求實(shí)數(shù)的取值范圍.
18.(12分)
設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線的極值;
(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求的取
7、值范圍.
19.(12分)
核酸檢測(cè)是診斷新冠肺炎的重要依據(jù),首先取病人的唾液或咽拭子的樣本,再提取唾液或咽拭子樣本里的遺傳物質(zhì),如果有病毒,樣本檢測(cè)會(huì)呈現(xiàn)陽(yáng)性,否則為陰性.某檢測(cè)點(diǎn)根據(jù)統(tǒng)計(jì)發(fā)現(xiàn),該處疑似病例核酸檢測(cè)呈陽(yáng)性的概率為.現(xiàn)有4例疑似病例,分別對(duì)其取樣檢測(cè),多個(gè)樣本檢測(cè)時(shí),既可以逐個(gè)化驗(yàn),也可以將若干個(gè)樣本混合在一起化驗(yàn).混合樣本中只要有病毒,則混合樣本化驗(yàn)結(jié)果就會(huì)呈陽(yáng)性.若混合樣本呈陽(yáng)性,則再將該組中每一個(gè)備份的樣本逐一進(jìn)行化驗(yàn);若混合樣本呈陰性,則判定該組各個(gè)樣本均為陰性,無(wú)需再檢驗(yàn).現(xiàn)有以下三種方案:
方案一:逐個(gè)化驗(yàn);
方案二:四個(gè)樣本混合在一起化驗(yàn);
方案三:平均
8、分成兩組,每組兩個(gè)樣本混合在一起,再分組化驗(yàn).
在新冠肺炎爆發(fā)初期,由于檢查能力不足,化驗(yàn)次數(shù)的期望值越小,則方案越“優(yōu)”.
(1)求4個(gè)疑似病例中至少有1例呈陽(yáng)性的概率;
(2)現(xiàn)將該4例疑似病例樣本進(jìn)行化驗(yàn),請(qǐng)問(wèn):方案一、二、三中哪個(gè)最“優(yōu)”?做出判斷并說(shuō)明理由.
20. (12分)
2021年3月1日,國(guó)務(wù)院新聞辦公室舉行新聞發(fā)布會(huì),工業(yè)和信息化部長(zhǎng)肖亞慶先生提出了芯片發(fā)展的五項(xiàng)措施,進(jìn)一步激勵(lì)國(guó)內(nèi)科技巨頭加大了科技研發(fā)投入的力度.中華技術(shù)有限公司擬對(duì)“麒麟”手機(jī)芯片進(jìn)行科技升級(jí),根據(jù)市場(chǎng)調(diào)研與模擬,得到科技升級(jí)投入(億元)與科技升級(jí)直接純收益(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:
序號(hào)
9、
1
2
3
4
5
6
7
8
9
10
11
12
2
3
4
6
8
10
13
21
22
23
24
25
13
22
31
42
50
56
58
68.5
68
67.5
66
66
當(dāng)時(shí),建立了與的兩個(gè)回歸模型:模型①:;模型②:;當(dāng)時(shí),確定與滿足的線性回歸方程為.
(1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)時(shí)模型①、②的相關(guān)指數(shù)的大小,并選擇擬合精度更高、更可靠的模型.
回歸模型
模型①
模型②
回歸方程
182.4
79.2
(附:刻畫(huà)回歸效果的相關(guān)指數(shù),)
(2)為鼓
10、勵(lì)科技創(chuàng)新,當(dāng)科技升級(jí)的投入不少于20億元時(shí),國(guó)家給予公司補(bǔ)貼5億元,以回歸方程為預(yù)測(cè)依據(jù),應(yīng)用(1)的結(jié)論,比較科技升級(jí)投入17億元與20億元時(shí)公司實(shí)際收益的大?。?
(附:線性回歸方程的系數(shù)關(guān)系:)
(3)科技升級(jí)后,“麒麟”芯片的效率大幅提高,經(jīng)實(shí)際試驗(yàn)得大致服從正態(tài)分布.公司對(duì)科技升級(jí)團(tuán)隊(duì)的獎(jiǎng)勵(lì)方案如下:若芯片的效率不超過(guò),不予獎(jiǎng)勵(lì):若芯片的效率超過(guò),但不超過(guò),每部芯片獎(jiǎng)勵(lì)2元;若芯片的效率超過(guò),每部芯片獎(jiǎng)勵(lì)4元.記為每部芯片獲得的獎(jiǎng)勵(lì),求(精確到0.01).
(附:若隨機(jī)變量,則,)
21. (12分)
已知函數(shù)f(x)=ex-1,g(x)=lnx-1,其中e為自然對(duì)數(shù)的底數(shù)
11、.
(1)當(dāng)x>0時(shí),求證:f(x)≥g(x)+2;
(2)是否存在直線與函數(shù)y=f(x)及y=g(x)的圖象均相切?若存在,這樣的直線最多有幾條?并給出證明.若不存在,請(qǐng)說(shuō)明理由.
(二)選考題:共10分。請(qǐng)考生在第22、23兩題中任選一題做答,如果多做.則按所做的第一題記分。
22.[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,以為極點(diǎn)、軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線過(guò)定點(diǎn)且與曲線交于,兩點(diǎn).
(1)求曲線的直角坐標(biāo)方程;
(2)若直線的斜率為2,求的值.
23.[選修4—5:不等式選講]
已知函數(shù).
(1)若,求不等式的解
12、集;
(2)若,使得,求的取值范圍.
2022屆高三第二次月考數(shù)學(xué)(理科)(參考答案)
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
B
A
C
C
B
C
A
B
B
B
D
二、填空題
13. 14. 15. 孫 李 16 . 2 3 4
三、解答題
17.解:(1)化簡(jiǎn),
又,所以
(2)由,
得等價(jià)于,且,
設(shè),在上嚴(yán)格增,
在上嚴(yán)格減,g(1)=1,g(3)=3,
g(x)在(0,3)內(nèi)的圖象如圖所示.
由題意等價(jià)于直線與函數(shù)
在上恰有兩個(gè)交點(diǎn),
此時(shí)
13、.
18.解:(1)∵,,,
,所以函數(shù)在x=- 處取得極小值
(2)
∵函數(shù)在區(qū)間內(nèi)單調(diào)遞減,
∴在區(qū)間上恒成立;
即,∵ ∴
即在區(qū)間上恒成立
∴,解得,
∴的取值范圍是
19.【解】
(1)用表示4個(gè)疑似病例中化驗(yàn)呈陽(yáng)性的人數(shù),則,
由題意可知,4個(gè)疑似病例中至少有1例呈陽(yáng)性的概率為
;
(2)方案一:逐個(gè)檢驗(yàn),檢驗(yàn)次數(shù)為4.
方案二:混合在一起檢測(cè),記檢測(cè)次數(shù)為,則隨機(jī)變量的可能取值為1,5,所以
,
,
所以隨機(jī)變量的分布列為:
1
5
所以方案二檢測(cè)次數(shù)的數(shù)學(xué)期望為;
方案三:每組兩個(gè)樣本檢測(cè)時(shí),呈陰性的概率為,
14、設(shè)方案三的檢測(cè)次數(shù)為隨機(jī)變量,則的可能取值為2,4,6,所以
,
,
,
所以隨機(jī)變量的分布列為:
2
4
6
所以方案三檢測(cè)次數(shù)的期望為,
因?yàn)椋?
所以選擇方案二最優(yōu).
20 【解】
(1)由表格中的數(shù)據(jù),,所以,
所以.
可見(jiàn)模型①的相關(guān)指數(shù)小于模型②的相關(guān)指數(shù).
所以回歸模型②的擬合效果更好.
(2)由(1)回歸模型②的擬合效果更好,其回歸方程為,
所以當(dāng)億元時(shí),科技升級(jí)直接收益的預(yù)測(cè)值為
(億元).
當(dāng)時(shí),由已知可得.
.
所以.
所以當(dāng)時(shí),與滿足的線性回歸方程為.
當(dāng)時(shí),科技升級(jí)直接收益的預(yù)測(cè)值為億元.
當(dāng)億元時(shí),實(shí)
15、際收益的預(yù)測(cè)值為億元億元,
所以技術(shù)升級(jí)投入億元時(shí),公司的實(shí)際收益更大.
(3)因?yàn)?,?
所以
;
.
所以(元).
21 解(1)設(shè),,.
因?yàn)樵跒樵龊瘮?shù),且,
所以,,為減函數(shù),
,,為增函數(shù).
所以,,即證.
(2)設(shè)直線與切于,與切于,.
,,,
所以切線為.
因?yàn)椋?,?
又因?yàn)椋?
將,代入,
得:,整理得.
設(shè),,
因?yàn)樵跒樵龊瘮?shù),且時(shí),,
所以,,為減函數(shù),
,,為增函數(shù).
,
又因?yàn)椋?
,
所以在上有兩個(gè)零點(diǎn),
即方程有兩個(gè)根,
所以有兩條直線與函數(shù)及的圖象均相切.
22.(1);(2).
【詳解】
(1)由得.
于是,∴,
所以曲線的直角坐標(biāo)方程為.
(2)設(shè)直線的傾斜角為,則,于是,,
所以直線的參數(shù)方程為(為參數(shù)).
將,代入得,
所以,,
所以.
23.(1)或};(2)答案見(jiàn)解析.
【詳解】
解:(1)當(dāng)時(shí),.
當(dāng)時(shí),,所以;
當(dāng)時(shí),,不成立;
當(dāng)時(shí),,所以,
所以,綜上可知,所求解集為或}.
(2)要求,使得時(shí),的取值范圍,
可先求,使得時(shí),的取值范圍,
,,
當(dāng)時(shí),恒成立;
當(dāng)時(shí),,
綜上,,使得時(shí),的取值范圍為,
故,使得時(shí),的取值范圍為.