花生剝殼機原理設計
《花生剝殼機原理設計》由會員分享,可在線閱讀,更多相關《花生剝殼機原理設計(26頁珍藏版)》請在裝配圖網上搜索。
1、1 引言 1.1 課題提出的背景 花生中富含脂肪和蛋白質,既是主要的食用植物油來源,而且又可提供豐富的植物蛋白質。利用花生或脫脂后的花生餅粕的蛋白粉,可直接用于焙烤食用,也可作為肉制品、乳制口、糖果和煎炸食品的原料或添加劑。以花生蛋白粉為原料或添加劑制成的食品,既提高了蛋白質含量,又改善了其功能特性?;ㄉ鞍追圻€可以通過高壓膨化制成蛋白肉?;ㄉ鞘秤弥参镉凸I(yè)的重要原料,利用花生油可制造人造奶油、起酥油、色拉油、調和油等,也可用作工業(yè)原料?;ㄉ浐唵渭庸ぞ涂墒秤猛?,經深加工還可以制成營養(yǎng)豐富,色、香、味俱佳的各種食品和保健品?;ㄉ庸じ碑a品花生殼和花生餅粕等可以綜合利用,加工增值,提
2、高經濟效益。由于這里不能上傳完整的畢業(yè)設計(完整的應包括畢業(yè)設計說明書、相關圖紙CAD/PROE、中英文文獻及翻譯等),此文檔也稍微刪除了一部分內容(目錄及某些關鍵內容)如需要其他資料的朋友,請加叩扣:2215891151 花生在制取油脂、制取花生蛋白、生產花生儀器以及在花生貿易出口時,都需要對花生進行預處理加工?;ㄉ念A處理主要包括花生的剝殼和分級、破碎、軋胚和蒸炒等。 花生在加工或作為出口商品時,需要進行剝殼加工?;ㄉ谥迫∮椭瑫r,剝殼的目的是為了提高出油率, 提高毛油和餅粕的質量,利于軋胚等后續(xù)工序的進行和皮殼的綜合利用。傳統(tǒng)的剝殼為人力手工剝殼,手工剝殼不僅手指易疲勞、受傷,而且
3、工效很低,所以花生產區(qū)廣大農民迫切要求用機器來代替手工剝殼?;ㄉ鷦儦C的誕生在很大程度上改變了這種局面,使花生產區(qū)的農民不必再采用最原始的剝殼方法進行剝殼,從而大大地減輕了農民的體力勞動,同時還提高了花生剝殼的效率。 花生脫殼機是將花生莢果去掉外殼而得到花生仁的場上作業(yè)機械。由于花生本身的生理特點決定了花生脫殼不能與花生的田間收獲一起進行聯(lián)合作業(yè),而只能在花生莢果的含水率降到一定程度后才能進行脫殼。隨著花生種植業(yè)的不斷發(fā)展,花生手工脫殼已無法滿足高效生產的要求,實行脫殼機械化迫在眉睫。 1.2 花生脫殼機械的發(fā)展 我國花生脫殼機的研制自1965年原八機部下達花生脫殼機的研制課題以來,已有
4、幾十種花生脫殼機問世。只進行單一脫殼功能的花生脫殼機結構簡單,價格便宜,以小型家用為主的花生脫殼機在我國一些地區(qū)廣泛應用,能夠完成脫殼、分離、清選和分級功能的較大型花生脫殼機在一些大批量花生加工的企業(yè)中應用較為普遍。國內現(xiàn)有的花生脫殼機種類很多,如6BH一60型花生剝殼機、6BH一20B型花生剝殼機、6BH一20型花生脫殼機等(技術參數(shù)見附表),其作業(yè)效率為人工作業(yè)效率的2O~60倍以上。錦州俏牌集團生產的TFHS1500型花生除雜脫殼分選機組一次能實現(xiàn)花生原料的脫殼、除皮、分選,是一種比較先進的花生后期生產機械。偉民牌6BH一720型花生脫殼機帶有復脫、分級裝置,采用搓板式脫殼、風力初選、比
5、重分離清選等裝置,具有結構緊湊、操作靈活方便、脫凈率高、消耗動力小等特點。6BK一22型花生脫殼機是一種一次喂料就可完成花生脫殼工作的機械,經風力初選、風扇振動、分層分離、復脫清選分級后的花生仁可直接裝袋入庫。6BH一1800型花生脫殼機械采用了三軋輥混合脫殼結構,能夠進行二次脫殼。而隨著我國花生產業(yè)的進一步調整,花生產量逐年增加,花生的機械化脫殼程度將大幅提高,花生脫殼機械將擁有廣闊的發(fā)展前景。 花生剝殼的原理很多,因此產生了很多種不同的花生剝殼機械?;ㄉ鷦儦げ考腔ㄉ鷦儦C的關鍵工作部件,剝殼部件的技術水平決定了機具作業(yè)剛花生仁破碎率、花生果一次剝凈率及生產效率等重要的經濟指標。在目前的
6、生產銷售中,花生仁破碎率是社會最為關心的主要指標。 八十年代以前的花生剝殼機械,破碎率一般都大于8%,有時高達l5%以上。加工出的花生仁,只能用來榨油,不能作種用,也達到出口標準。為了降低破碎率而探討新的剝殼原理,研制新式剝殼部件,便成為花生剝殼機械的重要研究課題。從六十年代初,開始在我國出現(xiàn)了封閉式紋桿滾筒,柵條凹板式花生剝殼機。自1983年以來,在已有的花生剝殼部件的研制基礎上,我國又相繼研制了多種不同結構型式的新式剝殼部件,其主要經濟技術指標,特別是破殼率指標大有改善。 以下介紹一下我國上個世紀幾種主要的花生剝殼部件 1.封閉式紋桿滾筒,柵條凹板式花生剝殼部件 圖 1 六十
7、年代初, 我國在吸收國外技術的基礎上,研制了TH-340型花生剝殼機,其剝殼部件是在一個圓筒上鑲上若干根紋桿組成的封閉式紋桿滾筒,下面裝有若干根圓鋼條組成的柵條式凹板,如圖1所示。 在該機構中花生進口大(3O-50毫米),出口小(1O-25毫米),工作時,花生果在滾筒的推動下由進口向出口端運動,在滾筒和凹板的沖擊、擠壓、揉搓作用下直接脫殼,花生受列剝殼機的直接搓擦作用,系強制脫殼,故破碎率高。剝殼時, 直徑同凹板柵縫一樣大小的單粒果及雙粒果便從柵縫中分離出來,所以一次剝凈率低,最高80%。為了將混在一起的花生仁和未脫果分離開來,采用柵條式凹板的剝殼機一般要配置分離機構。后來研制并生產的TH-
8、47O型,6 BH-570型等型式的剝殼機,結構與其大同小異,剝殼質量均不理想。 2. 封閉橡膠板滾筒,直立橡膠板式剝殼部件 該機的剝殼部件是由封閉膠輥和直立膠板組成,剝殼原理系擠壓式,如圖2所示 圖2 作業(yè)時,花生果在膠輥的推動下,通過剝殼間隙(5—20毫米),由膠輥和膠板的擠壓作用脫殼,避開了剝殼部件的揉搓作用,破碎率有所降低,但仍在5%以上。另外,因直徑小于剝殼間隙的小果未經剝殼便被分離出來,故一次剝凈率很低,只有30%左右。所以不得不增設循環(huán)機構,以使花生經多次擠壓脫殼,致使機器結構復雜、龐大,造價較高。 3. 開式紋桿滾筒,編織凹板式花生剝殼部件 剝殼部件采用了由
9、兩根金屬紋桿組成的開式紋桿滾筒和用編織絲網制成的編織凹板,其結構如圖3所示 圖3 作業(yè)時,花生果在滾筒的推動下,受擠壓揉搓脫殼,該結構與封閉滾筒式不同,花生果受到開式滾筒的攪拌作用,剝殼力帶有柔性,故其破碎率較低,可控制在3%-5% 。另外,與柵條式凹板不同,因系編織網孔凹板,剝殼時,只有直徑小于網孔尺寸的單粒癟果末脫殼而被網孔分離,雙粒長果則漏不出來,仍被剝殼,故剝凈率較高。 4. 立式剝殼機構 剝殼部件采用了由兩根扁鋼條焊接而成的立式轉子,下面裝著用編織絲網制成的編織平底篩,該剝殼部件如圖4所示。 圖4 在剝殼室內,花生果受立式轉子的推動而相互磨擦,從而達到剝殼的目
10、的,此方法系柔性揉搓剝殼。實踐證明,該機破碎率較低,可控制在3%以下。其缺點是由于采用立式傳動, 故傳動機構較為復雜。 5. 開式扁條滾筒,編織凹板式花生剝殼部件 采用了由三根扁鋼條制成的開式扁條滾筒,和用編織絲網制成的凹板結構,如圖5所示。作業(yè)時,花生果在扁條的推動下隨滾筒轉動,在滾筒和凹板之間形 圖5 成一個活動層,花生果在該活動層內互相揉搓而脫殼。由于在該機構中,避開了剝殼部件的直接擠壓, 沖擊的作用,而是花生搓花生,系柔性剝殼,故破碎率較低, 該機鑒定時實測破傷率(破碎率+損傷率)為0.91。另外脫凈率及生產效率等指標亦較理想。 1.3 花生脫殼機械的研究應用現(xiàn)狀 目
11、前國內花生脫殼機從其脫殼原理、結構和材料上基本可分為以打擊、揉搓為主的鋼紋桿——鋼柵條凹板 以擠壓、揉搓為主的橡膠滾筒一一橡膠浮動凹板兩大類,但脫殼質量均不高,破損率都大于8 %,剝出的花生米只能用于榨油和食用,滿足不了外貿出口和作種子的要求。探索先進的脫殼原理是解決脫殼機現(xiàn)存問題的重要途徑。 1.3.1 目前花生脫殼機采用的脫殼原理 目前應用比較廣泛的花生機械脫殼原理有以下幾種。 撞擊法脫殼 撞擊法脫殼是物料高速運動時突然受阻而受到沖擊力,使外殼破碎而實現(xiàn)脫殼的目的。其典型設備為由高速回轉甩料盤及固定在甩料盤周圍的粗糙壁板組成的離心脫殼機。甩料盤使花生莢果產生一個較大的離心力撞擊壁面,
12、只要撞擊力足夠大,莢果外殼就會產生較大的變形,進而形成裂縫。當莢果離開壁面時,由于外殼具有不同的彈性變形而產生不同的運動速度,莢果所受到的彈性力較小,運動速度也不如外殼,阻止了外殼迅速向外移動而使其在裂縫處裂開,從而實現(xiàn)籽粒的脫殼。撞擊脫殼法適合于仁殼間結合力小,仁殼間隙較大且外殼較脆的莢果。影響離心式脫殼機脫殼質量的因素有,籽粒的水分含量、甩料盤的轉速、甩料盤的結構特點等。 碾搓法脫殼 花生莢果在固定磨片和運動著的磨片間受到強烈的碾搓作用,使莢果的外殼被撕裂而實現(xiàn)脫殼。其典型的設備為由一個固定圓盤和一個轉動圓盤組成的圓盤剝殼機。莢果經進料口進入定磨片和動磨片的間隙中,動磨片轉動的離心力使籽
13、粒沿徑向向外運動,也使莢果與定磨片問產生方向相反的摩擦力;同時,磨片上的牙齒不斷對外殼進行切裂,在摩擦力與剪切力的共同作用下使外殼產生裂紋直至破裂,并與殼仁脫離,達到脫殼的目的。該種方法影響因素有,莢果的水分含量、圓盤的直經、轉速高低、磨片之間工作間隙的大小、磨片上槽紋的形狀和莢果的均勻度等。 剪切法脫殼 花生莢果在固定刀架和轉鼓間受到相對運動著的刀板的剪切力的作用,外殼被切裂并打開,實現(xiàn)外殼與果仁的分離。其典型設備為由刀板轉鼓和刀板座為主要工作部件的刀板剝殼機。在刀板轉鼓和刀板座上均裝有刀板,刀板座呈凹形,帶有調節(jié)機構,可根據(jù)花生莢果的大小調節(jié)刀板座與刀板轉鼓之間的間隙。當?shù)栋遛D鼓旋轉時,
14、與刀板之間產生剪切作用,使物料外殼破裂和脫落。主要適用于棉籽,特別是帶絨棉籽的剝殼,剝殼效果較好。由于其工作面較小,故易發(fā)生漏籽現(xiàn)象,重剝率較高。該種方法影響因素有,原料水分含量、轉鼓轉速的高低、刀板之間的間隙大小等。 擠壓法脫殼 擠壓法脫殼是靠一對直徑相同轉動方向相反,轉速相等的圓柱輥,調整到適當間隙,使花生莢果通過間隙時受到輥的擠壓而破殼。莢果能否順利地進入兩擠壓輥的間隙,取決于擠壓輥及與莢果接觸的情況。要使莢果在兩擠壓輥間被擠壓破殼,莢果首先必須被夾住,然后被卷入兩輥間隙。兩擠壓輥間的間隙大小是影響籽粒破損率和脫殼率高低的重要因素。 搓撕法脫殼 搓撕法脫殼是利用相對轉動的橡膠輥筒對籽
15、粒進行搓撕作用而進行脫殼的。兩只膠輥水平放置,分別以不同轉速相對轉動,輥面之間存在一定的線速差,橡膠輥具有一定的彈性.其摩擦系數(shù)較大?;ㄉv果進入膠輥工作區(qū)時,與兩輥面相接觸,如果此時莢果符合被輥子嚙人的條件,即嚙人角小于摩擦角,就能順利進入兩輥問.此時莢果在被拉人輥間的同時,受到兩個不同方向的摩擦力的撕搓作用;另外,莢果又受到兩輥面的法向擠壓力的作用,當莢果到達輥子中心連線附近時法向擠壓力最大,莢果受壓產生彈性—— 塑性變形,此時莢果的外殼也將在擠壓作用下破裂,在上述相反方向撕搓力的作用下完成脫殼過程。影響脫殼性能的因素有,線速差、膠壓輥的硬度、軋入角、軋輥半徑、軋輥間間隙等。 1.3.2
16、 新型脫殼技術 壓力膨脹法 原理是先使一定壓力的氣體進入花生殼內,維持一段時間,以使花生莢果內外達到氣壓平衡,然后瞬間卸壓,內外壓力平衡打破,殼體內氣體在高壓作用下產生巨大的爆破力而沖破殼體,從而達到脫殼的目的。主要影響因素有,充氣壓力、穩(wěn)定壓力維持時間、籽粒的含水率等。 真空法 將花生莢果放在真空爆殼機中,在真空條件下,將具有相當水分的莢果加熱到一定溫度,在真空泵的抽吸下,莢果吸熱使其外殼的水分不斷蒸發(fā)而被移除,其韌性與強度降低,脆性大大增加;真空作用又使殼外壓力降低,殼內部相對處于較高壓力狀態(tài)。殼內的壓力達到一定數(shù)值時,就會使外殼爆裂。 激光法 用激光逐個切割堅果外殼。試驗顯示,用這
17、種方法幾乎能夠達到100 9/6的整仁率,但因其費用昂貴、效率低下等原因,很難得到推廣。 1.3.3 花生脫殼機械的工藝研究 在脫殼技術方面,除了在原理和設備上進行研究外,人們還在工藝上進行了研究以提高籽粒的脫殼率及脫殼質量。 分級處理 物料的粒度范圍大,必須先按大小分級,再進行脫殼,才能提高脫殼率,減少破損率。 水分含量 花生莢果的含水率對脫殼效果有很大的影響,含水率大,則外殼的韌性增加;含水率小,則果仁的粉末度大。因此應使花生莢果盡量保持最適當?shù)暮?,以保證外殼和果仁具有最大彈性變形和塑性變形的差異,即外殼含水率低到使其具有最大的脆性,脫殼時能被充分破裂,同時又要保持仁的可塑
18、性,不能因水分太少而使果仁在外力作用下粉末度太大,可減少果仁破損率。 1.3.4 花生脫殼機械存在的問題 目前我國在花生脫殼技術研究方面一直沒有大的突破,資金投入也不足,脫殼部件的研制仍在2O世紀90年代初的技術水平上徘徊,所以在脫殼性能上并沒有很大的提高。由于機械脫殼時對花生仁的損傷率偏高,用于種子和較長期貯存的花生仁至今仍是手工剝殼。脫殼機械在技術性能和作業(yè)環(huán)節(jié)上存在以下問題:① 脫殼率低,脫殼后的果仁破損率高,損失大。② 機具性能不穩(wěn)定,適應性差。③ 通用性差,利用率低。④ 作業(yè)成本偏高,多數(shù)是單機制造,制造的工藝水平較低,同時能耗較高。⑤ 有些產品僅進行了樣機試制或少量試生產,未進
19、行大量生產性考核和示范應用,作業(yè)性能及商品性等方面還存在不少問題。 1.4 花生脫殼機械研究重點 我國加入WTO以來,國內外關于花生脫殼機械的開發(fā)與推廣應用日益增多,針對現(xiàn)有花生脫殼機械存在的優(yōu)點與不足,在未來的發(fā)展過程中,對花生脫殼機械在生產應用中的經驗進行總結,不斷完善其功能,使其呈現(xiàn)良好的發(fā)展勢頭。 1.4.1 提高花生脫殼機械的通用性和適應性 提高花生脫殼機械的通用性和適應性仍是當前的主要研究方向之一目前,許多花生脫殼機械只是針對某一花生品種和所在地區(qū)的生長環(huán)境來設計,其通用性、兼容性和適應性較差。提高花生脫殼機械的通用性和兼容性,使研制的花生脫殼機械通過更換主要部件能夠同
20、時對其他帶殼物料進行脫殼加工。研制通過變換主要工作部件即能滿足不同堅果脫殼作業(yè)需要的脫殼機具,并提高制造工藝水平,降低制造成本,以適應不同加工企業(yè)的需要?;ㄉ摎C械能否適應這種發(fā)展趨勢,將直接影響到花生脫殼機械能否更好的推廣應用與健康發(fā)展。 1.4.2 提高機械脫殼率。降低破損率 對花生脫殼機械的關鍵技術與工作部件進行重點攻關,改革傳統(tǒng)結構,研究新的脫殼機理,優(yōu)化結構設計;同時在整體配置上進一步改進和完善,提高脫殼率,降低籽仁破損率。目前國內外的花生脫殼機械均存在脫殼率和破損率之間的矛盾,處理好這一關鍵技術將關系到花生脫殼機械的發(fā)展前景。 1.4.3 向自動控制和自動化方向發(fā)展大多數(shù)機
21、具目前仍依賴人工喂料或定位,影響了作業(yè)速度和作業(yè)質量。因此應通過機電一體化手段,開發(fā)設計自動喂料、自動定位脫殼裝置,保證均勻喂料與有效定位,實現(xiàn)機組自動化操作,進一步提高作業(yè)精確性和作業(yè)速度,提高產品質量與生產率,滿足部分大、中型加工企業(yè)的需要,以開拓國內和國外市場。 新技術原理、新結構材料、新工藝將不斷應用于花生機械的研制開發(fā)中,隨著液壓技術、電子技術、控制技術以及化工、冶金工業(yè)的發(fā)展,許多復雜的機械機構、動力傳遞、笨重的材料和落后的工藝將逐漸被取代。減輕重量,減少阻力,簡化操作,減少輔助工作時間,延長使用壽命,降低勞動使用費用等將作為主要設計目標應用于脫殼機械的設計制造。隨著國內外高新技
22、術的進一步發(fā)展,如何將這些高新技術更好的應用到實際生產中,也是目前花生脫殼機械需要盡快解決的問題。 1.5 花生脫殼機械應用前景展望 花生生產機械化是農業(yè)現(xiàn)代化的重要組成部分,是農業(yè)和農村經濟持續(xù)快速發(fā)展的重要保證,近年來,花生機械裝備總量不斷穩(wěn)步增長,作業(yè)水平進一步提高,社會化服務規(guī)模不斷擴大,雖然目前花生脫殼機械化水平較高,但是多應用于經濟發(fā)達地區(qū)與示范推廣區(qū),并且小型機械多、大型機械少,低檔機械多、高性能機械少。在一些地區(qū),用作種子和特殊用途的花生仁仍采用傳統(tǒng)的手工剝殼,勞動生產率低,區(qū)域性發(fā)展不平衡。進入21世紀,我國花生生產機械化開始了新的發(fā)展階段,農業(yè)結構調整發(fā)生了新的變化,也
23、對花生機械的發(fā)展產生了積極而深遠的影響,不僅拉動了新的有效需求,而且構筑了適合花生生產機械化發(fā)展的新舞臺,為花生生產機械化真正成為農村經濟發(fā)展的推動器提供了廣闊的市場發(fā)展條件。在一些地區(qū)推進花生生產機械化的過程中,相繼出臺了鼓勵和扶持農民購買花生機械、開展花生機械作業(yè)服務的優(yōu)惠政策和措施,調動了農民購買花生機械的積極性,形成了新的市場需求。隨著花生種植業(yè)的不斷發(fā)展,國內外對花生深加工產品的需求不斷增大,提高花生脫殼機械化作業(yè)水平成為必然?;ㄉ摎C在提高勞動生產率,減輕勞動強度方面起到了積極的作用,促進了花生加工業(yè)的科技進步,為花生脫殼機械的發(fā)展提供了空間。 2 刮板式花生去殼機的結構及工
24、作原理 2.1 刮板式花生去殼機的結構 根據(jù)刮板式花生去殼機的剝殼原理可知道,花生是從上至下依次經過集料斗、剝殼箱、柵格、下箱出口、分選口,花生仁收集斗這些部件的,因此設計剝殼機的整體結構的依據(jù)就出來了。 設計過程是從上往下,從花生的裝集開始,最上面是集料斗,集料斗下方是剝殼箱,集料斗可與剝殼箱設計為一個整體。在剝殼箱內,花生必須經過刮板的撞擊和擠壓作用才能進行剝殼,因此,將刮板設計置在剝殼箱內?;ㄉ涍^刮板的撞擊和擠壓進行剝殼后,要經過位于剝殼箱底部的柵格,于是可以把柵格設計成一個半圓柵籠,將其固定在剝殼箱的下半箱內?;ㄉ┻^柵格后經過剝殼箱底部的出口往下落,在下落過程中,設計一個
25、風機的吹入口,其作用是將經過剝殼的花生殼與花生仁進行分離,重量稍重的不被風吹走,而重量較輕的花生殼將被風機吹來的氣流帶入到花生殼收集通道,通道的底部設計成一定角度。經過分離的花生仁往下落,落入花生仁收集通道,將此通道與花生殼收集通道的底面設計成一個整體,這樣的設計可以讓被風吹走的花生仁通過自身的重量往下回滾到花仁收集通道。 為保證整機的各部分的安裝,需設計一個機架,機架起到其它幾個部分的支承、定位、連接作用,并將電機安裝在機架里面,剝殼機安裝在機架的上方。其結構簡圖如圖2-1所示。 圖2-1 2.2 工作原理 刮板式花生去殼機以前也稱為刀籠剝殼機,是借助轉動軸上的刮板與籠柵的擠
26、壓和打擊作用,將花生果外殼破碎的一種機械設備,其特點是結構簡單、操作方便。其結構如圖1-1所示。它主要由進料機構、剝殼機構和支承機構等部分組成。 圖1-1 花生果進入存料斗后,經下部的入料窄口形成薄層流落下來進入剝殼箱內,與高速旋轉的刮板相互碰撞,在刮板的錘擊下,花生殼發(fā)生破裂,從而進行第一次剝殼。部分花生果在下落過程中沒有與刮板發(fā)生碰撞,有些發(fā)生碰撞了而花生殼卻未撞裂,這部分花生落入到由圓鋼棒排列成的柵格上,由于柵格頂部與刮板的旋轉外徑間的間距不足以容納一個花生果,因此花生果將在落入柵格的同時被刮板再次錘擊和擠壓,從而使這些花生果的果殼也被壓碎。剝殼后的仁與殼通過柵格間的間隙落下,在
27、下落的同時,受到風機吹來的經調節(jié)好的氣流作用,果殼因重量輕而被氣流送入集殼通道,而花生仁因重量大,繼續(xù)往下落,從而達到了殼仁分離的目的。 3刮板式花生去殼機主要部件的結構設計 刮板式花生去殼機能否正常運轉,看的是其主要部件的設計,如果設計不合理,機器就不能正常運轉或者說不能運轉,那么生產出來的這臺機器就是一堆費品。設計合理,機器就能正常的運轉對并對花生果進行剝殼。因此,刮板式花生去殼機的主要部件的設計在整個設計過程中顯得尤為重要,合理的設計將提供給使用者更多的方便和實惠。 3.1設計前各項參數(shù)的確定 3.1.1 刮板的半徑及轉速初定 刮板的旋轉必須確保能將部分花生殼撞碎
28、,當花生果與鋼質物體相對速度達到5時,可使花生殼破碎而不會破壞到花生仁,可根據(jù)此依據(jù)設計刮板的轉速與半徑。 如圖3-1所示,花生下落位置在之間,設計時采用最小碰撞半徑為計算半徑 取半徑R=250mm,則n=382.2r/min XXXXXXXXXX......此處刪除無數(shù)+N個字,完整設計請加扣扣:2215891151 在零的程度, 為H2 的電離分子由100 keV 正子沖擊[ 10 ] 。 結構依照為沖擊對重的離子被觀察那么尖銳不被定義由于占實驗性窗口在正子的卷積 并且電子偵查。 從目標反沖不充當在這個實驗性情況的重大角色, 當前一般理論給結果相似與那些由Ber
29、akdar [ 11 ] 獲得, 并且兩個跟隨嚴密實驗性價值。 這同樣實驗由Sarkadi 和工友執(zhí)行了在氬電離由75 keV 氫核沖擊。 他們第一次測量了四倍有差別的電離橫剖面在collinear 幾何為離子原子碰撞, 并且發(fā)現(xiàn)ECC 尖頂和在正子沖擊在大角度。 在這種情況下, 我們必須保留動力學的一個完全帳戶為了再生產實驗性結果[ 12 ] 。 6. 托馬斯機制 現(xiàn)在讓我們走回到H2 的電離由1 keV 正子沖擊。 一個結構在45 可能被觀察, 1993 年哪些象由于被預言了和被解釋了由Brauner 和布里格斯二個等效雙重碰撞機制干涉。 每個這些過程包括正子電子二進制碰
30、撞, 被偏折跟隨被90 輕的微粒的當中一個被重的中堅力量。 這個機制由托馬斯[ 13 ] 提議作為扼要負責任電子捕獲由快速的重的離子。 在這種情況下, 從電子和正子大量是相等的, 這兩個過程干涉在45 。 如果我們降低能量從1000 年eV 到100 eV, 這個結構在45 消失, 與想法是一致的結果托馬斯機制是一個高能作用。 但有其它結構, 在大約22.5。我們在下個部分將考慮這個結構。 7. 備鞍點機制 結構的起源在大約22.5 一定更難辨認。 對我們的最佳的知識, 它以前未被預言在正子原子碰撞, 即使機制負責任它的起源幾乎已經提議在離子原子碰撞二十年之內以前。 想法是,
31、電子能從離子原子碰撞涌現(xiàn)由在在子彈頭和殘余的目標離子潛力的備鞍點。 1772 年這個機制清楚地與平衡點的當中一個有關由拉格朗日發(fā)現(xiàn), 或對機制由Wannier 提議為低能源電子放射。 在 離子原子碰撞案件, 查尋這個機制的理論和實驗性證據(jù)是陰暗由生動的爭論[ 14-18 ] 。 在正子原子碰撞情況下, 為電子被困住在正子和殘余離子潛力的馬鞍, 電子和正子必須首先執(zhí)行二進制碰撞以便最終獲得正確的速度 那里ei 是目標的結合能在初始狀態(tài)。 能量和動量保護原則的應用表示, 正子偏離在角度 終于, 為電子涌現(xiàn)在方向和正子一樣, 它必須遭受隨后碰撞以殘余中堅力量在a 托馬斯象
32、過程。 在這第二碰撞, 電子由90 和殘余目標離子反沖偏轉在形成大約135 角度與電子和正子的方向。 這個機制被描述在圖4. 因而, 檢查備鞍點的提案是正確的, 我們看是否我們的演算顯示與備鞍點電子生產的這個描述是一致的結構。 圖 3 圖 4 極小值被觀察在無效性QDCS 。 圖3 和圖4 精確地設置早先條件在任何能量和角度三個微粒符合的那些點。 我們做了其它測試在備鞍點機制的有效性和無效性。 圖5 表示, 結構完全出現(xiàn)從tp
33、 期限。 這個結果與提出的機制是一致的, 那里備鞍點結構出現(xiàn)從第一正子電子碰撞之后, 正子和電子被中堅力量驅散。 圖 5 8. 結論 總結結果提出了在這通信, 我們由正子的沖擊調查了分子氫的電離。 被獲得的四倍有差別的橫斷面為電子和正子涌現(xiàn)在同樣方向顯示三個統(tǒng)治結構。 你是知名的電子捕獲對連續(xù)流峰頂。 另外一個是托馬斯機制。 終于, 有被解釋對象由于所謂的"備鞍點" 電離機制的極小值。 雖然主要結論研究的非常充分但也有一些不足。橫剖面也許會被很多巨大的困難所阻礙, 但值得高興的是, 我們
34、一直沒有錯過對問題許多不同的全方位的觀察, 唯一的遺憾就是對總橫剖面的研究。 英文原文 Theory of ionization processes in positron–atom collisions Abstract We review past and present theoretical developments in the description of ionization processes in positron–atom collisions. Starting from an analysis that incorporates all the intera
35、ctions in the final state on an equal footing and keeps an exact account of the few-body kinematics, we perform a critical comparison of different approximations, and how they affect the evaluation of the ionization cross section. Finally, we describe the appearance of fingerprints of capture to the
36、 continuum, saddle-point and other kinematical mechanisms. Keywords: Ionization; Collision dynamics; Scattering; Electron spectra; Antimatter; Positron impact; Saddle-point electrons; Wannier; CDW PACS classification codes: 34.10.+x; 34.50.Fa 1. Introduction The simple ionization collision
37、 of a hydrogenic atom by the impact of a structureless particle, the “three-body problem”, is one of the oldest unsolved problems in physics. The two-body problem was analyzed by Johannes Kepler in 1609 and solved by Isaac Newton in 1687. The three-body problem, on the other hand, is much more compl
38、icated and cannot be solved analytically, except in some particular cases. In 1765, for instance, Leonhard Euler discovered a “collinear” solution in which three masses start in a line and remain lined-up. Some years later, Lagrange discovered the existence of five equilibrium points, known as the L
39、agrange points. Even the most recent quests for solutions of the three-body scattering problem use similar mathematical tools and follow similar paths than those travelled by astronomers and mathematicians in the past three centuries. For instance, in the center-of-mass reference system, we describe
40、 the three-body problem by any of the three possible sets of the spatial coordinates already introduced by Jacobi in 1836. All these pairs are related by lineal point canonical transformations, as described in [1]. In momentum space, the system is described by the associated pairs (kT,KT), (kP,KP) a
41、nd (kN,KN). Switching to the Laboratory reference frame, the final momenta of the electron of mass m, the (recoil) target fragment of mass MT and the projectile of mass MP can be written in terms of the Jacobi impulses Kj by means of Galilean transformations [1] For decades, the theoretical des
42、cription of ionization processes has assumed simplifications of the three-body kinematics in the final state, based on the fact that ? in an ion–atom collision, one particle (the electron) is much lighter than the other two, ? in an electron–atom or positron–atom collision, one particle (the targ
43、et nucleus) is much heavier than the other two. For instance, based on what is known as Wick’s argument, the overwhelming majority of the theoretical descriptions of ion–atom ionization collisions uses an impact-parameter approximation, where the projectile follows an undisturbed straight line traj
44、ectory throughout the collision process, and the target nucleus remains at rest [2]. It is clear that to assume that the projectile follows a straight line trajectory makes no sense in the theoretical description of electron or positron–atom collisions. However, it is usually assumed that the target
45、 nucleus remains motionless. These simplifications of the problem were introduced in the eighteenth century. The unsolvable three-body problem was simplified, to the so-called restricted three-body problem, where one particle is assumed to have a mass small enough not to influence the motion of th
46、e other two particles. Though introduced as a means to provide approximate solutions to systems such as Sun–planet–comet within a Classical Mechanics framework, it has been widely used in atomic physics in the so-called impact-parameter approximation to ion–atom ionization collisions. Another simp
47、lification of the three-body problem widely employed in the nineteenth century assumes that one of the particles is much more massive than the other two and remains in the center of mass unperturbed by the other two. This approximation has been widely used in electron–atom or positron–atom ionizatio
48、n collisions. 2. The multiple differential cross section A kinematically complete description of a three-body continuum final-state in any atomic collision would require, in principle, the knowledge of nine variables, such as the components of the momenta associated to each of the three particle
49、s in the final state. However, the condition of momentum and energy conservation reduces this number to five. Furthermore, whenever the initial targets are not prepared in any preferential direction, the multiple differential cross section has to be symmetric by a rotation of the three-body system a
50、round the initial direction of motion of the projectile. Thus, leaving aside the internal structure of the three fragments in the final state, only four out of nine variables are necessary to completely describe the scattering process. Therefore, a complete characterization of the ionization process
51、 may be obtained with a quadruple differential cross section: There are many possible sets of four variables to use. For, instance, we can chose azimuthal angles of the electron and of one of the other two particles, the relative angle between the planes of motion, and the energy of one particl
52、e. Such a choice is arbitrary, but complete in the sense that any other set of variables can be related to this one. A similar choice of independent variables has been standard for the description of atomic ionization by electron impact, both theoretically and experimentally [3] and [4]. A pi
53、cture of the very general quadruple differential cross section is not feasible. Thus, it is usually necessary to reduce the number of variables in the cross section. This can be achieved by fixing one or two of them at certain particular values or conditions. For instance, we might arbitrarily restr
54、ict ourselves to describe a coplanar (i.e. =0) or a collinear motion (i.e. =0 and θ1=θ2), so as to reduce the dependence of the problem to three or two independent variables, respectively. The other option is to integrate the quadruple differential cross section over one or more variables. Th
55、e former has been widely used to study electron–atom collisions, while the latter has been the main tool to characterize ion–atom and positron–atom ionization collisions. Particularly important has been the use of single particle spectroscopy, where the momentum of one of the particles is measured.
56、 3. Single particle momentum distributions In ionization by positron impact it is feasible to study the momentum distribution of any of the involved fragments. As is shown in Fig. 1, the momentum distributions for the emitted electron and the positron present several structures. First, we can obs
57、erve a threshold at high electron or positron velocities because there is a limit in the kinetic energy that any particle can absorb from the system. The second structure is a ridge set along a circle. It corresponds to a binary collision of the positron with the emitted electron, with the target nu
58、cleus playing practically no role. Finally, there is a cusp and an anticusp at zero velocity in the electron and positron momentum distributions, respectively. The first one corresponds to the excitation of the electron to a low-energy continuum state of the target. The second is a depletion due to
59、the impossibility of capture of the positron by the target nucleus. These momentum distributions allow us to study the main characteristics of ionization collisions. However, we have to keep in mind that any experimental technique that analyzes only one of the particles in the final-state can only p
60、rovide a partial insight into the ionization processes. The quadruple differential cross sections might display collision properties that are washed out by integration in this kind of experiments. Fig. 1.Electron and positron momentum distributions for the ionization of helium by impact of posit
61、rons with incident velocity v=12a.u. 4. Theoretical model The main question that we want to address in this communication is if there are some important collision properties in positron–atom collisions, that are not observable in total, single or double differential ionization cross sections, an
62、d that therefore have not yet been discovered. In order to understand the origin of these structures, we compare the corresponding cross sections with those obtained in ion–atom collisions. To fulfill this objective it is necessary to have a full quantum-mechanical treatment able to deal simultaneou
63、sly with ionization collisions by impact of both heavy and light projectiles that is therefore equally applicable – for instance – to ion–atom or positron–atom collisions. A theory with this characteristics will allow us to study the changes of any given feature of multiple-differential cross-sectio
64、ns when the mass relations among the fragments vary. In particular, it would allow us to study the variation when changing between the two restricted kinematical situations. The second important point is to treat all the interactions in the final state on an equal footing. As we have just explaine
65、d, in ion–atom collisions, the internuclear interaction plays practically no role in the momentum distribution of the emitted electron and has therefore not been considered in the corresponding calculation. In this work, this kind of assumption has been avoided. The cross section of interest withi
66、n this framework is The transition matrix can be alternatively written in post or prior forms as where the perturbation potentials are defined by (H?E)Ψi=Vi Ψi and (H?E)Ψf=VfΨf. For the Born-type initial state which includes the free motion of the projectile and the initial bound state Φi of the target, and the perturbation potential Vi is simply the sum of the positron–electron and positron–nucleus interactions. The transition matrix may then be decomposed int
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應急處置程序和方法
- 某物業(yè)公司冬季除雪工作應急預案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設備設施故障應急預案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內容、方法和要求
- 物業(yè)管理制度:安全防范十大應急處理預案
- 物業(yè)公司巡查、檢查工作內容、方法和要求
- 某物業(yè)公司保潔部門領班總結
- 某公司安全生產舉報獎勵制度
- 物業(yè)管理:火情火災應急預案
- 某物業(yè)安保崗位職責
- 物業(yè)管理制度:節(jié)前工作重點總結
- 物業(yè)管理:某小區(qū)消防演習方案
- 某物業(yè)公司客服部工作職責