電大《數(shù)學(xué)思想方法》練習(xí)卷(含答案)參考小抄
《電大《數(shù)學(xué)思想方法》練習(xí)卷(含答案)參考小抄》由會員分享,可在線閱讀,更多相關(guān)《電大《數(shù)學(xué)思想方法》練習(xí)卷(含答案)參考小抄(22頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專業(yè)好文檔 《數(shù)學(xué)思想方法》練習(xí)卷 班別: 姓名: 學(xué)號: 得分:____ 1.某次數(shù)學(xué)測驗一共出了10道題,評分方法如下:每答對一題得4分,不答題得0分,答錯一題倒扣1分,每個考生預(yù)先給10分作為基礎(chǔ)分。問:此次測驗至多有多少種不同的分數(shù)? 2.一支隊伍的人數(shù)是5的倍數(shù),且超過1000人。若按每排4人編隊,則最后差3人;若 按每排3人編隊,則最后差2人;若按每排2人編隊,則最后差1人。問:這支隊伍至少有多少人? 3.在八邊形的8個頂點上是否可以分別記上數(shù)1,2,…,8,使得任意三個相鄰的頂點上的數(shù)的和
2、大于13? 4.有一個1000位的數(shù),它由888個1和112個0組成,這個數(shù)是否可能是一個平方數(shù)? 5.如下圖,四邊形ABCD和EFGH都是正方形,且邊長均為2cm。又E點是正方形 ABCD的中心,求兩個正方形公共部分(圖中陰影部分)的面積S。 6.是否在平面上存在這樣的40條直線,它們共有365個交點? 7.如右圖,正方體的8個頂點處標注的數(shù)字為a,b,c,d,e, 求(a+b+c+d)-(e+f+g+h)的值。 8.將n2個互不相等的數(shù)排成下表: a11 a12 a13 … a1n a21
3、a22 a23 … a2n an1 an2 an3 … ann 先取每行的最大數(shù),得到n個數(shù),其中最小數(shù)為x;再取每列的最小數(shù),也得到n個數(shù),其中最大數(shù)為y。試比較x和y的大小。 9.將10到40之間的質(zhì)數(shù)填入下圖的圓圈中,使得3組由“→”所連的4個數(shù)的和相等,如果把和數(shù)相等的填法看做同一類填法,請說明一共有多少類填法?并畫圖表示你的填法。 10.有四個互不相等的數(shù),取其中兩個數(shù)相加,可以得到六個和:24,28,30,32,34,38。求此四數(shù)。 11.互不相等的12個自然數(shù),它們均小于36。有人說,在這些自然數(shù)兩兩相減(大減?。┧?/p>
4、得到的差中,至少有3個相等。你認為這種說法對嗎?為什么? 12.有8個重量各不相同的物品,每個物品的重量都是整克數(shù)且都不超過15克。想以最少的次數(shù)用天平稱出其中最重的物品。他用了如下的測定法: ?。?)把8個物品分成2組,每組4個,比較這2組的輕重; (2)把以上2組中較重的4個再分成2組,即每組2個,再比較它們的輕重; ?。?)把以上2組中較重的分成各1個,取出較重的1個。 稱了3次天平都沒有平衡,最后便得到一個物品。 可是實際上得到的是這8個物品當中從重到輕排在第5的物品。 問:找出的這個物品有多重?并求出第二輕的物品重多少克?
5、 13.育才小學(xué)40名學(xué)生參加一次數(shù)學(xué)競賽,用15分記分制(即分數(shù)為0,1,2,…,15)。全班總分為209分,且相同分數(shù)的學(xué)生不超過5人。試說明得分超過12分的學(xué)生至多有9人。 14.今有一角紙幣、二角紙幣、五角紙幣各1張,一元幣4張,五元幣2張,用這些紙幣任意付款,一共可以付出多少種不同數(shù)額的款項? 15.求在8和98之間(不包括8和98),分母為3的所有最簡分數(shù)的和。 16.如右圖,四邊形ABCD的面積為3,E,F(xiàn)為邊AB的三等分點,M,N是CD邊上的三等分點。求四邊形EFNM的面積。 17.直線上分布著1998個點,我們標出以這些點
6、為端點的一切可能線段的中點。問:至少可以得到多少個互不重合的中點? 18.假定100個人中的每一個人都知道一個消息,而且這100個消息都不相同。為了使所有的人都知道一切消息,他們一共至少要打多少個電話? 19.有4個互不相等的自然數(shù),將它們兩兩相加,可以得到6個不同的和,其中較小的4個和是64,66,68,70。求這4個數(shù)。 20.有五個砝碼,其中任何四個砝碼都可以分成重量相等的兩組。問:這五個砝碼的重量相等嗎?為什么? 《數(shù)學(xué)思想方法》練習(xí)卷答案 1.解:最高的得分為50分,最低的得分為0分。在
7、從0分到50分這51個分數(shù)中,有49,48,47,44,43,39這6種分數(shù)是不能達到的,故此次測驗不同的分數(shù)至多有51-6=45(種)。 2.分析:從條件的反面來考慮,可理解為“若按每排4人編隊,則最后多1人”。按3人、2人排隊都可理解為多1人。即總?cè)藬?shù)被12除余1。這樣一來,原題就化為:一個5的倍數(shù)大于1000,且它被12除余1。問:這個數(shù)最小是多少?解:是5的倍數(shù)且除以12余1的最小自然數(shù)是25。因人數(shù)超過1000,[3,4,5]=60,最少有25+6017=1045(人)。 3.解:將八邊形的8個頂點上的數(shù)依次記為a1,a2,a3,…,a8,則有S=a1+a2+a3+…+a8=1+
8、2+3+…+8=36?!〖僭O(shè)任意3個相鄰頂點上的數(shù)都大于13,因為頂點上的數(shù)都是整數(shù),所以 a1+a2+a3≥14; a2+a3+a4≥14; …… a7+a8+a1≥14;a8+a1+a2≥14。 將以上 8個不等式相加,得3S≥112,從而 S> 37,這與S=36矛盾。故結(jié)論是否定的。 4.解:假設(shè)這個數(shù)為A,它是自然數(shù)a的平方?!∫驗锳的各位數(shù)字之和888是3的倍數(shù),所以a也應(yīng)是3的倍數(shù)。于是a的平方是9的倍數(shù),但888不是9的倍數(shù),這樣就產(chǎn)生了矛盾,從而A不可能是平方數(shù)。 5.分析:我們先考慮正方形EFGH的特殊位置,即它的各邊與正方形ABCD的各邊對應(yīng)平
9、行的情況(見上圖)。此時,顯然有 得答案后,這個問題還得回到一般情況下去解決,解決的方法是將一般情況變成特殊情況。 解:自E向AB和AD分別作垂線EN和EM(右圖),則有S=S△PME+S四邊形AMEQ 又S△PME=S△EQN,故S=S△EQN+S四邊形AMEQ =S正方形AMEN=1 6. 分析與解:先考慮一種特殊的圖形:圍棋盤。它有38條直線、361個交點。我們就從這種特殊的圖形出發(fā),然后進行局部的調(diào)整。 先加上2條對角線,這樣就有40條直線了,但交點仍然是361個。再將最右邊的1條直線向右平移1段,正好增加了4個交點(見上圖)。于是,我們就得到了有365個交點的
10、40條直線。 7. 分析:從這8個數(shù)都相等的特殊情況入手,它們滿足題目條件,從而得所求值為0。這就啟發(fā)我們?nèi)フf明a+b+c+d=e+f+g+h。 解:由已知得 3a=b+e+d,3b=a+c+f, 3c=b+d+g,3d=a+c+h, 推知 3a+3b+3c+3d=2a+2b+2c+2d+e+f+g+h, a+b+c+d=e+f+g+h, ?。╝+b+c+d)-(e+f+g+h)=0。 8. 分析:先討論n=3的情況,任取兩表: 1 3 7 1 2 3 2 5 6 4 5 6
11、 8 9 4 7 8 9 左上表中x=6,y=4;右上表中x=3,y=3。兩個表都滿足x≥y,所以可以猜想x≥y。 解:設(shè)x是第i行第j列的數(shù)aij,y是第l行第m列的數(shù)alm??紤]x所在的行與y所在的列交叉的那個數(shù),即第i行第m列的數(shù)aim。顯然有aij≥aim≥alm,當i=l,j=m時等號成立,所以x≥y。 9. 解:10到40之間的8個質(zhì)數(shù)是 11,13,17,19,23,29,31,37。 根據(jù)題目要求,除去最左邊和最右邊的2個質(zhì)數(shù)之外,剩下的6個質(zhì)數(shù)在同一行的2個質(zhì)數(shù)的和應(yīng)分別相等,等于這6個數(shù)中最小數(shù)(記為a)與最大數(shù)(記為b)之和a+b。根據(jù)a,b的大小
12、可分為6種情況: 當a=11,b=29時,無解; 當a=11,b=31時,有11+31=13+29=19+23,得到如下填法: 當a=11,b=37時,有11+37=17+31=19+29,得到如下填法: 當a=13,b=31時,無解; 當a=13, b=37時,無解; 當a=17,b=37時,無解。 所以,共有2類填法。 10. 解:設(shè)四個數(shù)為a,b,c,d,且a<b<c<d,則六個和為a+b,a+c,a+d,b+c,b+d,c+d,其中a+b最小,a+c次小,c+d最大,b+d次大,a+d與b+c位第三和第四。 得 11. 解:設(shè)這12個自然數(shù)從小到大依
13、次為a1,a2,a3,…,a12,且它們兩兩相減最多只有2個差相等,那么差為1,2,3,4,5的都最多只有2個。從而 a12-a11,a11-a10,a10-a9,…,a2-a1, 這11個差之和至少為2(1+2+3+4+5)+6=36, 但這11個差之和等于a12-a1<36。這一矛盾說明,兩兩相減的差中,至少有3個相等。 12. 解:設(shè)這8個物品的重量依次排列為: 15≥a1>a2>a3>a4>a5>a6>a7>a8≥1。 找出的這個物品重量為a5,第二輕的物品重量為a7。 由于a5加上一個比它輕的物品不可能大于兩個比a5重的物品重量之和,因
14、而第一次必須篩去3個比a5重的物品?! ∵@樣就有以下四種可能: 先考慮第一種情況。根據(jù)①式,a4比a1至少輕3克,a5比a2,a6比a3也都至少輕3克,則a7比a8至少重 10克。根據(jù)②式,a5比a4至少輕1克,則a6比a7至少重 18克。與已知矛盾,第一種情況不可能出現(xiàn)。按同樣的方法,可以說明第二種和第三種情況也不可能出現(xiàn)。 最后,考慮第四種情況。a1比a2至少重1克;a5比a3,a6比a4都至少輕1克,則a7比a8至少重4克。根據(jù)④式,a5比a4至少輕4克,則a6比a7至少重5克。這樣得到的這8個物品的重量
15、分別為:a1=15克, a2=14克, a3=13克, a4=12克,a5=11克,a6=10克,a7=5克,a8=1克。找出的這個物品重11克,第二輕的物品重5克。 13.若得分超過12分的學(xué)生至少有10人,則全班的總分至少有 5(12+13)+5(0+1+2+3+4+5)=210(分), 大于條件209分,產(chǎn)生了矛盾,故得分超過12分的學(xué)生至多有9人。 14.解:從最低幣值1角到最高幣值14元8角,共148個不同的幣值。再從中剔除那些不能由這些紙幣構(gòu)成的幣值。經(jīng)計算,應(yīng)該剔除的幣值為(i+0.4)元(i=0,1,2,…,14)及(j+0.9)元(j=1,2,3,…,13),
16、一共29種幣值。所以,一共可以付出148-29=119(種)不同的幣值?! ? 15. =2(8+9+…+97)+(97-8+1)=9540。 16.解:先考慮ABCD是長方形的特殊情況,此時EFNM的面積是1。 下面就一般情況求解。 連結(jié)AC,AM,F(xiàn)M,CF,則 17.解:為了使計算互不重復(fù),我們?nèi)【嚯x最遠的兩點A,B。先計算以A為左端點的所有線段,除B外有1996條,這些線段的中點有1996個,它們互不重合,且到點A的距離小于AB長度的一半?!⊥瑯樱訠為右端點的所有線段,除A外有1996條,這些線段的中點有1996個,它們互不重合,且到點A的距
17、離小于AB長度的一半?! ∵@兩類中點不會重合,加上AB的中點共有1996+1996+1=3993(個),即互不重合的中點不少于3993個。另一方面,當這1998個點中每兩個相鄰點的間隔都相等時,不重合的中點數(shù)恰為3993。這說明,互不重合的中點數(shù)至少為3993個。 18. 解:考慮特殊的通話過程:先由99人每人打一個電話給A,A再給99人每人打一個電話,這樣一共打了198個電話,而且每人都知道了所有的消息。下面說明這是次數(shù)最少的??紤]一種能使所有人知道一切消息的通話過程中的關(guān)鍵性的一次通話,這次通話后,有一個接話人A知道了所有的消息,而在此之前還沒有人知道所有的消息?! 〕薃以外的99人
18、每人在這個關(guān)鍵性的通話前,須打出電話一次,否則A不可能知道所有的消息;又這99人每人在這個關(guān)鍵性的通話后,又至少收到一個電話,否則它們不可能知道所有的消息。 19. 解:設(shè)4個數(shù)為a,b,c,d,且a<b<c<d,則6個和為a+b,a+c,a+d,b+c,b+d,c+d。于是有 a+b<a+c<a+d<b+d<c+d 和a+b<a+c<b+c<b+d<c+d。 得 20. 解:去掉e,則有a+d=b+c; ① 去掉d,則有a+e=b+c。 ② 比較①②,得d=e。去掉a,則有b+e=c+b; ③ 去掉b,則有a+e=c+d。 ④ 比較③④,得a
19、=b。 將a=b代入①得c=d,將d=e代入④得b=c。所以e=b=c=d=e。 《數(shù)學(xué)思想方法》測驗卷(2) 班別: 姓名: 學(xué)號: 得分:___ 1. 兩人坐在一張長方形桌子旁,相繼輪流在桌子上放入同樣大小的硬幣。條件是硬幣一定要平放在桌子上,后放的硬幣不能壓在先放的硬幣上,直到桌子上再也放不下一枚硬幣為止。誰放入了最后一枚硬幣誰獲勝。問:先放的人有沒有必定取勝的策略? 2.線段AB上有1998個點(包括A,B兩點),將點A染成紅色,點B染成藍色,其余
20、 各點染成紅色或藍色。這時,圖中共有1997條互不重疊的線段。問:兩個端點顏色相異的小線段的條數(shù)是奇數(shù)還是偶數(shù)?為什么? 3.1000個學(xué)生坐成一圈,依次編號為1,2,3,…,1000?,F(xiàn)在進行1,2報數(shù):1號學(xué)生報1后立即離開,2號學(xué)生報2并留下,3號學(xué)生報1后立即離開,4號學(xué)生報2并留下……學(xué)生們依次交替報1或2,凡報1的學(xué)生立即離開,報2的學(xué)生留下,如此進行下去,直到最后還剩下一個人。問:這個學(xué)生的編號是幾號? 4.在66的正方形網(wǎng)格中,把部分小方格涂成紅色。然后任意劃掉3行和3列,使得剩下的小方格中至少有1個是紅色的。那么,總共至少要涂紅多少小方格?
21、 5.新上任的宿舍管理員拿著20把鑰匙去開20個房間的門,他知道每把鑰匙只能打開其中的一個門,但不知道哪一把鑰匙開哪一個門,現(xiàn)在要打開所有關(guān)閉的20個門,他最多要開多少次? 6.有n名(n≥3)選手參加的一次乒乓球循環(huán)賽中,沒有一個全勝的。問:是否能夠找到三名選手A,B,C,使得A勝B,B勝C,C勝A? 7.n(n≥3)名乒乓球選手單打比賽若干場后,任意兩個選手已賽過的對手恰好都不完全相同。試證明,總可以從中去掉一名選手,而使余下的選手中,任意兩個選手已賽過的對手仍然都不完全相同。 8.右圖是一個44的表格,每個方格中填入了數(shù)
22、字0或1。按下列規(guī)則進行“操作”:每次可以同時改變某一行的數(shù)字:1變成0,0變成1。 問:能否通過若干次“操作”使得每一格中的數(shù)都變成1? 9.有三堆石子,每堆分別有1998,998,98?!,F(xiàn)在對這三堆石子進行如下的“操作”:每次允許從每堆中各拿掉一個或相同個數(shù)的石子,或從任一堆中取出一些石子放入另一堆中。按上述方式進行“操作”,能否把這三堆石子都取光?如行,請設(shè)計一種取石子的方案;如不行,請說明理由。 10.我們將若干個數(shù)x,y,z,…的最大值和最小值分別記為max(x,y,z,…)和min(x,y,z,…)。已知:a+b+c+d+e+f+g=1,求m
23、in[max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)] 11.方程x1+x2+x3+…+xn-1+xn=x1x2x3…xn-1xn一定有一個自然數(shù)解嗎?為什么? 12.連續(xù)自然數(shù)1,2,3,…,8899排成一列。從1開始,留1劃掉2和3,留4劃掉5和6……這么轉(zhuǎn)圈劃下去,最后留下的是哪個數(shù)? 13.給出一個自然數(shù)n,n的約數(shù)的個數(shù)用一個記號A(n)來表示。例如當n=6時,因為6的約數(shù)有1,2,3,6四個,所以A(6)=4。已知a1,a2,…,a10是 10個互不相同的質(zhì)數(shù),又x為a1,a2,…,a10的積,求 A(x)。
24、 14.在一塊平地上站著5個小朋友,每兩個小朋友之間的距離都不相同,每個小朋友手上都拿著一把水槍。當發(fā)出射擊的命令后,每人用槍射擊距離他最近的人。問:射擊后有沒有一個小朋友身上是干的?為什么? 15.把1600?;ㄉ纸o100只猴子,請說明不管怎樣分,至少有4只猴子分的花生一樣多。 16.有兩只桶和一只空杯子。甲桶裝的是牛奶,乙桶裝的是酒精(未滿)。現(xiàn)在從甲桶取一滿杯奶倒入乙桶,然后從乙桶取一滿杯混合液倒入甲桶,這時,是甲桶中的酒精多,還是乙桶中的牛奶多?為什么? 17.在黑板上寫上1,2,3,…,1998。按下列規(guī)定進行“操作”:每次擦去
25、其中的任意兩個數(shù)a和b,然后寫上它們的差(大減?。?,直到黑板上剩下一個數(shù)為止。問:黑板上剩下的數(shù)是奇數(shù)還是偶數(shù)?為什么? 答案: 1.分析與解:如果桌子大小只能容納一枚硬幣,那么先放的人當然能夠取勝。然后設(shè)想桌面變大,注意到長方形有一個對稱中心,先放者將第一枚硬幣放在桌子的中心,繼而把硬幣放在后放者所放位置的對稱位置上,這樣進行下去,必然輪到先放者放最后一枚硬幣。 2.分析:從最簡單的情況考慮:如果中間的1996個點全部染成紅色,這時異色線段只有1條,是一個奇數(shù)。然后我們對這種染色方式進行調(diào)整:將某些紅點改成藍點并注意到顏色調(diào)整時,異色線段的條數(shù)隨之有哪些變化。由
26、于顏色的調(diào)整是任意的,因此與條件中染色的任意性就一致了。 解:如果中間的1996個點全部染成紅色,這時異色線段僅有1條,是一個奇數(shù)。將任意一個紅點染成藍色時,這個改變顏色的點的左右兩側(cè)相鄰的兩個點若同色,則異色小線段的條數(shù)或者增加2條(相鄰的兩個點同為紅色),或者減少2條(相鄰的兩個點同為藍色);這個改變顏色的點的左右兩側(cè)相鄰的兩個點若異色,則異色小線段的條數(shù)不變。 綜上所述,改變?nèi)我鈧€點的顏色,異色線段的條數(shù)的改變總是一個偶數(shù),從而異色線段的條數(shù)是一個奇數(shù)。 3.分析:這個問題與上一講練習(xí)中的第8題非常相似,只不過本例是報1的離開報2的留下,而上講練習(xí)中相當于報1的留下報2的離
27、開,由上講練習(xí)的結(jié)果可以推出本例的答案。本例中編號為1的學(xué)生離開后還剩999人,此時,如果原來報2的全部改報1并留下,原來報1的全部改報2并離開,那么,問題就與上講練習(xí)第8題完全一樣了。因為剩下999人時,第1人是2號,所以最后剩下的人的號碼應(yīng)比上講練習(xí)中的大1,是975+1=976(號)。 為了加深理解,我們重新解這道題。 解:如果有2n個人,那么報完第1圈后,剩下的是2的倍數(shù)號;報完第2圈后,剩下的是22的倍數(shù)號……報完第n圈后,剩下的是2n的倍數(shù)號,此時,只剩下一人,是2n號。 如果有(2n+d)(1≤d<2n)人,那么當有d人退出圈子后還剩下2n人。因為下一個該退出去
28、的是(2d+1)號,所以此時的第(2d+1)號相當于2n人時的第1號,而2d號相當于2n人時的第2n號,所以最后剩下的是第2d號。 由1000=29+488知,最后剩下的學(xué)生的編號是 4882=976(號)。 4.分析與解:先考慮每行每列都有一格涂紅,比較方便的涂法是在一條對角線上涂6格紅色的,如圖1。 任意劃掉3行3列,可以設(shè)想劃行劃列的原則是:每次劃掉紅格的個數(shù)越多越好。對于圖1,劃掉3行去掉3個紅格,還有3個紅格恰在3列中,再劃掉3列就不存在紅格了。 所以,必然有一些行有一些列要涂2個紅格,為了盡可能地少涂紅格,那么每涂一格紅色的,一定要使多出一行同時也多出
29、一列有兩格紅色的。 先考慮有3行中有2格涂紅,如圖2。顯然,同時也必然有3個列中也有2格涂紅。這時,我們可以先劃掉有2格紅色的3行,還剩下3行,每行上只有一格涂紅,每列上也只有一格涂紅,那么在劃掉帶紅格的3列就沒有紅格了。 為了使得至少余下一個紅格,只要再涂一格。此紅格要使圖中再增加一行和一列有兩個紅格的,如圖3。 結(jié)論是:至少需要涂紅10個方格。 5. 解:從最不利的極端情況考慮:打開第一個房間要20次,打開第二個房間需要19次……共計最多要開 20+19+18+…+1=210(次)。 6. 解:從極端情況觀察入手,設(shè)B是勝的次數(shù)最多的一個選手,但因B沒獲全勝,故必有
30、選手A勝B。在敗給B的選手中,一定有一個勝A的選手C,否則,A勝的次數(shù)就比B多一次了,這與B是勝的次數(shù)最多的矛盾。 所以,一定能夠找到三名選手A,B,C,使得A勝B,B勝C,C勝A。 7. 證明:如果去掉選手H,能使余下的選手中,任意兩個選手已賽過的對手仍然都不完全相同,那么我們稱H為可去選手。我們的問題就是要證明存在可去選手。 設(shè)A是已賽過對手最多的選手。 若不存在可去選手,則A不是可去選手,故存在選手B和C,使當去掉A時,與B賽過的選手和與C賽過的選手相同。從而B和C不可能賽過,并且B和C中一定有一個(不妨設(shè)為B)與A賽過,而另一個(即C)未與A賽過。 又因C不是
31、可去選手,故存在選手D,E,其中D和C賽過,而E和C未賽過。 顯然,D不是A,也不是B,因為D與C賽過,所以D也與B賽過。又因為B和D賽過,所以B也與E賽過,但E未與C賽過,因而選手E只能是選手A。 于是,與A賽過的對手數(shù)就是與E賽過的對手數(shù),他比與D賽過的對手數(shù)少1,這與假設(shè)A是已賽過對手最多的選手矛盾。 故一定存在可去選手。 8. 解:我們考察表格中填入的所有數(shù)的和的奇偶性:第一次“操作”之前,它等于9,是一個奇數(shù), 每一次“操作”,要改變一行或一列四個方格的奇偶性,顯然整個16格中所有數(shù)的和的奇偶性不變。 但當每一格中所有數(shù)字都變成1時,整個16格中所有數(shù)
32、的和是16,為一偶數(shù)。故不能通過若干次“操作”使得每一格中的數(shù)都變成1。 9. 解:要把三堆石子都取光是不可能的。 按“操作”規(guī)則,每次拿掉的石子數(shù)的總和是3的倍數(shù),即不改變石子總數(shù)被 3除時的余數(shù)。而1998+998+98=3094,被3除余1,三堆石子被取光時總和被3除余0。所以,三堆石子都被取光是辦不到的。 10. 解:設(shè) M=max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)。 因為a+b+c,c+d+e,e+f+g都不大于M,所以 11.有。解:當n=2時,方程x1+x2=x1x2有一個自然數(shù)解:x1=2,x2=2; 當n=3時,方程
33、x1+x2+x3=x1x2x3有一個自然數(shù)解:x1=1,x2=2,x3=3; 當n=4時,方程x1+x2+x3+x4=x1x2x3x4有一個自然數(shù)解:x1=1,x2=1,x3=2,x4=4。 一般地,方程x1+x2+x3+…+xn-1+xn=x1x2x3…xn-1xn有一個自然數(shù)解:x1=1,x2=1,…,xn-2=1,xn-1=2,xn=n。 12.解:仿例3。當有3n個數(shù)時,留下的數(shù)是1號。 小于8899的形如3n的數(shù)是38=6561,故從1號開始按規(guī)則劃數(shù),劃了8899-6561=2338(個)數(shù)后,還剩下6561個數(shù)。下一個要劃掉的數(shù)是238823+1=3507,故
34、最后留下的就是3508。 13.解:質(zhì)數(shù)a1有2個約數(shù):1和a,從而A(a1)=2;2個質(zhì)數(shù)a1,a2的積有4個約數(shù):1,a1,a2,a1a2,從而 A(a1a2)=4=22; 3個質(zhì)數(shù)a1,a2,a3的積有8個約數(shù):1,a1,a2,a3,a1a2,a2a3,a3a1,a1a2a3, 從而A(a1a2a3)=8=23;……于是,10個質(zhì)數(shù)a1,a2,…,a10的積的約數(shù)個數(shù)為 A(x)=210=1024。 14. 解:設(shè)A和B兩人是距離最近的兩個小朋友,顯然他們應(yīng)該互射。此時如果有其他的小朋友射向他們中的一個,即A,B中有一人挨了兩槍,那么其他三人中必然有一人身上是干的。如
35、果沒有其他的小朋友射向A或B,那么我們再考慮剩下的三個人D,E,F(xiàn):若D,E的距離是三人中最近的,則D,E互射,而F必然射向他們之間的一個,此時F身上是干的。 15.假設(shè)沒有4只猴子分的花生一樣多,那么至多3只猴子分的花生一樣多。我們從所需花生最少情況出發(fā)考慮:得1粒、2粒、3?!?2粒的猴子各有3只,得33?;ㄉ暮镒佑?只,于是100只猴子最少需要分得花生 3(0+1+2+…+32)+33=1617(粒),現(xiàn)在只有1600?;ㄉ瑹o法使得至多3只猴子分的花生一樣多,故至少有4只猴子分的花生一樣多?! ?6. 提示:從整體看,甲、乙兩桶所裝的液體的體積沒有發(fā)生變化。甲桶里有多少酒精,就必
36、然倒出了同樣體積的牛奶入乙桶。所以,甲桶中的酒精和乙桶中的牛奶一樣多。 17.解:黑板上開始時所有數(shù)的和為S=1+2+3+…+1998=1997001, 是一個奇數(shù),而每一次“操作”,將(a+b)變成了(a-b),實際上減少了2b,即減少了一個偶數(shù)。因為從整體上看,總和減少了一個偶數(shù),其奇偶性不變,所以最后黑板上剩下一個奇數(shù)。 Winger Tuivasa-Sheck, who scored two tries in the Kiwis 20-18 semi-final win over England, has been passed fit after a lower-le
37、g injury, while Slater has been named at full-back but is still recovering from a knee injury aggravated against USA. Both sides boast 100% records heading into the encounter but Australia have not conceded a try since Josh Charnleys effort in their first pool match against England on the opening d
38、ay. Aussie winger Jarryd Hayne is the competitions top try scorer with nine, closely followed by Tuivasa-Sheck with eight. But it is recently named Rugby League International Federation player of the year Sonny Bill Williams who has attracted the most interest in the tournament so far. The Kiwi -
39、 with a tournament high 17 offloads - has the chance of becoming the first player to win the World Cup in both rugby league and rugby union after triumphing with the All Blacks in 2011. "Id give every award back in a heartbeat just to get across the line this weekend," said Williams.The (lack of) a
40、ir up there Watch mCayman Islands-based Webb, the head of Fifas anti-racism taskforce, is in London for the Football Associations 150th anniversary celebrations and will attend Citys Premier League match at Chelsea on Sunday. "I am going to be at the match tomorrow and I have asked to meet Yaya T
41、oure," he told BBC Sport. "For me its about how he felt and I would like to speak to him first to find out what his experience was." Uefa hasopened disciplinary proceedings against CSKAfor the "racist behaviour of their fans" duringCitys 2-1 win. Michel Platini, president of European footballs go
42、verning body, has also ordered an immediate investigation into the referees actions. CSKA said they were "surprised and disappointed" by Toures complaint. In a statement the Russian side added: "We found no racist insults from fans of CSKA." Baumgartner the disappointing news: Mission aborted. T
43、he supersonic descent could happen as early as Sunda. The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm -- winds less than 2 mph, with no precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move throu
44、gh the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As
45、 he crosses the boundary layer (called the tropopause),e can expect a lot of turbulence. The balloon will slowly drift to the edge of space at 120,000 feet ( Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform. They blew it in 2008 when th
46、ey got caught cold in the final and they will not make the same mistake against the Kiwis in Manchester. Five years ago they cruised through to the final and so far history has repeated itself here - the last try they conceded was scored by Englands Josh Charnley in the opening game of the tourname
47、nt. That could be classed as a weakness, a team under-cooked - but I have been impressed by the Kangaroos focus in their games since then. They have been concentrating on the sort of stuff that wins you tough, even contests - strong defence, especially on their own goal-line, completing sets and a
48、 good kick-chase. Theyve been great at all the unglamorous stuff that often goes unnoticed in the stands but not by your team-mates. It is as though their entire tournament has been preparation for the final. In Johnathan Thurston, Cooper Cronk, Cameron Smith and either Billy Slater or Greg Inglis
49、 at full-back they have a spine that is unmatched in rugby league. They have played in so many high-pressure games - a priceless asset going into Saturday. The Kiwis are a lot less experienced but winning a dramatic match like their semi-final against England will do wonders for their confidence. They defeated Australia in the Four Nations final in 2010 and the last World Cup, and know they can rise to the big occasion.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案