《初三數(shù)學(xué) 圓 知識(shí)點(diǎn)總結(jié)》由會(huì)員分享,可在線閱讀,更多相關(guān)《初三數(shù)學(xué) 圓 知識(shí)點(diǎn)總結(jié)(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、初三數(shù)學(xué)圓 知識(shí)點(diǎn)總結(jié)
一、圓的相關(guān)概念
1、圓的定義
在一個(gè)個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的 叫做圓心, 叫做半徑。
2、圓的幾何表示:以點(diǎn)O為圓心的圓,記作“⊙O”,讀作“圓O”
二、弦、弧等與圓有關(guān)的定義
(1)弦:連接圓上 叫做弦。(如圖中的AB)
(2)直徑:經(jīng)過(guò) 的弦叫做直徑。(如圖中的CD);
直徑等于半徑的2倍。
(3)半圓
圓的任意一條直徑的 分圓成兩條弧,每一條弧都叫做半圓。
(4)弧、優(yōu)弧
2、、劣弧
連接圓上任意 叫做圓弧,簡(jiǎn)稱弧。
弧用符號(hào)“⌒”表示,以A,B為端點(diǎn)的弧記作“”,讀作“圓弧AB”或“弧AB”。
大于 的弧叫做優(yōu)弧(多用三個(gè)字母表示); 半圓的弧叫做劣?。ǘ嘤脙蓚€(gè)字母表示)
三、垂徑定理及其推論
垂徑定理: 弦的直徑平分這條弦,并且平分弦所對(duì)的弧。
推論1:(1)平分弦( )的直徑垂直于弦,并且 所對(duì)的兩條弧。
(2)弦的垂直平分線經(jīng)過(guò) ,并且平分弦所對(duì)的兩條弧。
(3)平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另一條弧。
3、
推論2:圓的兩條平行弦所夾的弧 。 過(guò)圓心
垂直于弦
垂徑定理及其推論可概括為: 直徑平分弦 知二推三
平分弦所對(duì)的優(yōu)弧
平分弦所對(duì)的劣弧
四、圓的對(duì)稱性
1、圓的軸對(duì)稱性
圓是 圖形,經(jīng)過(guò) 直線都是它的對(duì)稱軸。
2、圓的中心對(duì)稱性: 圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
五、弧、弦、弦心距
4、、圓心角之間的關(guān)系定理
1、圓心角:頂點(diǎn)在 的角叫做圓心角。
2、弦心距:從 的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關(guān)系定理
在 中,相等的圓心角所對(duì)的 相等,所對(duì)的 相等,所對(duì)的弦的 相等。
推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
六、圓周角定理及其推論
1、圓周角:頂點(diǎn)在 ,并且兩邊都和圓 的角叫做圓周角。
2、圓周角定理;
5、一條弧所對(duì)的 等于它所對(duì)的圓心角的 。
推論1: 所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推論2: 所對(duì)的圓周角是直角;90的圓周角所對(duì)的弦是 。
推論3:如果三角形一邊上的中線等于這邊的一半,則這個(gè)三角形是 三角形。
七、點(diǎn)和圓的位置關(guān)系
設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:
d
6、2)過(guò)兩點(diǎn)可以做 個(gè)圓(圓心分布在兩點(diǎn)的 上)
(3)過(guò)三點(diǎn)的圓:不在同一直線上的三個(gè)點(diǎn)確定 個(gè)圓。
2、三角形的外接圓;經(jīng)過(guò)三角形的 的圓叫做三角形的外接圓。
3、三角形的外心
三角形外接圓的圓心是三角形三條邊的 的交點(diǎn),它叫做這個(gè)三角形的外心。
4、圓內(nèi)接四邊形性質(zhì)(四點(diǎn)共圓的判定條件);圓內(nèi)接四邊形 互補(bǔ)。
九、反證法
先假設(shè)命題中的結(jié)論不成立,然后由此經(jīng)過(guò)推理,引出矛盾,判定所做的假設(shè)不正確,從而得到原命題成立,這種證明方法叫做反證法。
十、直
7、線與圓的位置關(guān)系
直線和圓有三種位置關(guān)系,具體如下:
(1)相交:直線和圓有 公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫做圓的 ,公共點(diǎn)叫做 點(diǎn);
(2)相切:直線和圓有 公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的 ,
(3)相離:直線和圓 公共點(diǎn)時(shí),叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:
直線l與⊙O相交dr;
十一、切線的判定和性質(zhì)
1、切線的判定定理
經(jīng)過(guò)半徑的
8、 并且 這條半徑的直線是圓的切線。
2、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò) 的半徑。
十二、切線長(zhǎng)定理
1、切線長(zhǎng):在經(jīng)過(guò)圓外一點(diǎn)的 上,這點(diǎn)和切點(diǎn)之間的線段的長(zhǎng)叫做這點(diǎn)到圓的切線長(zhǎng)。
2、切線長(zhǎng)定理
從圓外一點(diǎn)引圓的 條切線,它們的 相等,圓心和這一點(diǎn)的連線 兩條切線的夾角。
十三、三角形的內(nèi)切圓
1、三角形的內(nèi)切圓:與三角形的各邊都 的圓叫做三角形的內(nèi)切圓。
2、三角形的內(nèi)心
三角形的內(nèi)切圓的圓心是三角形的三條內(nèi) 的
9、交點(diǎn),叫做三角形的 心。
十四、正多邊形和圓
1、正多邊形的定義: 相等,各角也 的多邊形叫做正多邊形。
2、正多邊形和圓的關(guān)系
只要把一個(gè)圓分成相等的一些弧,就可以做出這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓就是這個(gè)正多邊形的外接圓。
十五、與正多邊形有關(guān)的概念
1、正多邊形的中心:正多邊形的外接圓的 叫做這個(gè)正多邊形的中心。
2、正多邊形的半徑:正多邊形的 的半徑叫做這個(gè)正多邊形的半徑。
3、正多邊形邊心距:
正多邊形的 到正多邊形一邊的 叫做這個(gè)正多邊形的邊心距。
4、中
10、心角
正多邊形的每一邊所對(duì)的外接圓的圓心角叫做這個(gè)正多邊形的 。
十六、正多邊形的對(duì)稱性
1、正多邊形的軸對(duì)稱性
正多邊形都是 圖形。一個(gè)正n邊形共有 條對(duì)稱軸,每條對(duì)稱軸都通過(guò)正n邊形的 。
2、正多邊形的中心對(duì)稱性
邊數(shù)為 數(shù)的正多邊形是中心對(duì)稱圖形,它的對(duì)稱中心是正多邊形的 。
3、正多邊形的畫法:先用量角器或尺規(guī)等分圓,再做正多邊形。
十七、弧長(zhǎng)和扇形面積
1、弧長(zhǎng)公式:n的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式為
2、扇形面
11、積公式;S扇 = = 。
其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng)。
3、圓錐的側(cè)面積:S側(cè)= =
S全= =
(其中l(wèi)是圓錐的母線長(zhǎng),r是圓錐的地面半徑。)
初三數(shù)學(xué)圓練習(xí)題
一、細(xì)心選一選(每題3分,共30分)
1、如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠B=30,則∠A的度數(shù)
是( )
12、A、30 B、45 C、60 D、90
2、如圖,已知圓心角∠BOC=80,則圓周角∠BAC的度數(shù)是( )
A、160 B、80 C、40 D、20
3、如圖,圓O的弦AB垂直平分半徑OC,則四邊形OACB是( )
A
B
C
D
E
O
A、正方形 B、長(zhǎng)方形 C、菱形 D、以上答案都不對(duì)
第5題
4、⊙O的半徑為5cm,點(diǎn)A到圓心O的距離為3cm,那么點(diǎn)A與⊙O的位置關(guān)系是( )
A、點(diǎn)A在圓內(nèi) B、點(diǎn)A在圓上 C、點(diǎn)A在圓外
13、 D、無(wú)法確定
5、如圖所示,如果為的直徑,弦,垂足為,那么下列結(jié)論中,正確的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
_
A
_
P
_
B
_
O
第6題
6、如圖,從圓O外一點(diǎn)P引圓O的兩條切線PA,PB,切點(diǎn)分別為A、B,如果∠APB=60,PA=8,那么弦AB的長(zhǎng)是( )
A、4 B、8 C、 D、
7、下列命題中,不正確的是( )
A、垂直平分弦的直線經(jīng)過(guò)圓心 B、平分弦的直徑一定垂直于弦
C、平行弦所夾的兩條弧相等 D
14、、垂直于弦的直徑必平分弦所對(duì)的弧
8、下列命題錯(cuò)誤的是( )
A.經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
B.三角形的外心到三角形各頂點(diǎn)的距離相等 C.經(jīng)過(guò)三個(gè)點(diǎn)一定可以作圓
D.同圓或等圓中,相等的圓心角所對(duì)的弧相等
9、已知一個(gè)圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則此圓錐的底面半徑是( )A.1 B.2 C.2.5 D.3
10、如圖,已知△ABC內(nèi)接于⊙O,∠BAC=65,
則∠OBC的度數(shù)是( )
A、60 B、70 C、65 D、25
二、填空題
11.直線L經(jīng)過(guò)
15、圓O內(nèi)點(diǎn)A,則直線L與圓O的位置關(guān)系是:
12、在半徑為3cm的圓中,120的圓心角所對(duì)的弧長(zhǎng)是 。
13、已知圓錐的底面半徑是2cm,母線長(zhǎng)是3cm,則圓錐側(cè)面積是 。
14、已知扇形的半徑為3cm,圓心角為120,則扇形面積為
cm2(結(jié)果保留π)
15、知扇形的圓心角是150,面積是240πcm2,則扇形半徑是 。
16、正五邊形的一個(gè)中心角的度數(shù)是______________,
17、圓內(nèi)接正六邊形的邊心距與半徑之比是 。
18、在△ABC中
16、,∠A= 70,點(diǎn)O為△ABC的外心,則∠BOC= 。
三、解答題(一)(每小題5分,共15分)
19、在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,5為半徑作⊙O,已知A、B、C三點(diǎn)的坐標(biāo)分別為A(3,4),B(-3,-3),C(4,)。試判斷A、B、C三點(diǎn)與⊙O的位置關(guān)系.
20、如圖,PA、PB切⊙O于點(diǎn)A、B,PA=10cm,CD切⊙O于點(diǎn)E,交PA、PB于點(diǎn)C、D,則△PCD的周長(zhǎng)是多少?
21、如圖,OA、OB、OC是⊙O的三條半徑,∠AOC=BOC,M、N分別是OA、OB的中點(diǎn),求證:MC=NC
22、如圖,⊙O的半徑為10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于點(diǎn)C,且CD=4cm,求弦AB的長(zhǎng)。
23、(第23題圖)
如圖,AB、AC為⊙O的弦,連接CO、BO并延長(zhǎng)分別交弦AB、AC于點(diǎn)E、F,∠B=∠C.求證:CE=BF.
24、如圖,A是⊙O外一點(diǎn),B是⊙O上一點(diǎn),AO的延長(zhǎng)線交⊙O于點(diǎn)C,連結(jié)BC,∠C=22.5,∠A=45.求證:直線AB是⊙O的切線。
9