高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練18 統(tǒng)計與統(tǒng)計案例 文-人教版高三數(shù)學(xué)試題
《高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練18 統(tǒng)計與統(tǒng)計案例 文-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練18 統(tǒng)計與統(tǒng)計案例 文-人教版高三數(shù)學(xué)試題(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題能力訓(xùn)練18 統(tǒng)計與統(tǒng)計案例 一、能力突破訓(xùn)練 1.(2019廣東揭陽二模,4)通過隨機詢問50名性別不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表,由K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)得K2=50×(20×15-10×5)230×20×25×25≈8.333.參照附表,得到的正確結(jié)論是( ) 愛好 不愛好 合計 男生 20 5 25 女生 10 15 25 合計 30 20 50 附表: P(K2≥k0) 0.010 0.005 0.001 k0 6.635 7.879 10.828 A.在犯錯誤的
2、概率不超過0.5%的前提下認為“愛好該項運動與性別有關(guān)” B.在犯錯誤的概率不超過0.5%的前提下認為“愛好該項運動與性別無關(guān)” C.在犯錯誤的概率不超過0.1%的前提下認為“愛好該項運動與性別有關(guān)” D.在犯錯誤的概率不超過0.1%的前提下認為“愛好該項運動與性別無關(guān)” 2.某高校調(diào)查了200名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時間不少于22.5小時的人數(shù)是(
3、) A.56 B.60 C.120 D.140 3.(2019福建泉州質(zhì)檢,6)已知某樣本的容量為50,平均數(shù)為70,方差為75.現(xiàn)發(fā)現(xiàn)在收集這些數(shù)據(jù)時,其中的兩個數(shù)據(jù)記錄有誤,一個錯將80記錄為60,另一個錯將70記錄為90.在對錯誤的數(shù)據(jù)進行更正后,重新求得樣本的平均數(shù)為x和方差為s2,則( ) A.x=70,s2<75 B.x=70,s2>75 C.x>70,s2<75 D.x<70,s2>75 4.已知x與y之間的一組數(shù)據(jù): x 0 1 2 3 y m 3 5.5 7 已求得關(guān)于y與x的線性回歸方程為y^=2.1x+0.85,則m的值為( )
4、 A.1 B.0.85 C.0.7 D.0.5 5.(2018全國Ⅲ,文14)某公司有大量客戶,且不同年齡段客戶對其服務(wù)的評價有較大差異,為了解客戶的評價,該公司準備進行抽樣調(diào)查,可供選擇的抽樣方法有簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣,則最合適的抽樣方法是 .? 6.某樣本數(shù)據(jù)的莖葉圖如圖,若該組數(shù)據(jù)的中位數(shù)為85,則該組數(shù)據(jù)的平均數(shù)為 .? 7.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為200,400,300,100件.為檢驗產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進行檢驗,則應(yīng)從丙種型號的產(chǎn)品中抽取 件.? 8.某
5、手機廠商在銷售200萬臺某型號手機時開展“手機碎屏險”活動.活動規(guī)則如下:用戶購買該型號手機時可選購“手機碎屏險”,保費為x元.若在購機后一年內(nèi)發(fā)生碎屏可免費更換一次屏幕.該手機廠商將在這200萬臺該型號手機全部銷售完畢一年后,在購買碎屏險且購機后一年內(nèi)未發(fā)生碎屏的用戶中隨機抽取1 000名,每名用戶贈送1 000 元的紅包.為了合理確定保費x的值,該手機廠商進行了問卷調(diào)查,統(tǒng)計后得到下表(其中y表示保費為x元時愿意購買該“手機碎屏險”的用戶比例): x 10 20 30 40 50 y 0.79 0.59 0.38 0.23 0.01 (1)根據(jù)上面的數(shù)據(jù)求出y
6、關(guān)于x的回歸直線方程; (2)通過大數(shù)據(jù)分析,在使用該型號手機的用戶中,購機后一年內(nèi)發(fā)生碎屏的比例為0.2%.已知更換一次該型號手機屏幕的費用為2 000元.若該手機廠商要求在這次活動中因銷售該“手機碎屏險”產(chǎn)生的利潤不少于70萬元,能否把保費x定為5元? 參考公式:b^=∑i=1n(xi-x)(yi-y)∑i=1n(xi-x)2,a^=y?b^x. 參考數(shù)據(jù):表中x的5個值從左到右分別記為x1,x2,x3,x4,x5,相應(yīng)的y值分別記為y1,y2,y3,y4,y5,經(jīng)計算有∑i=15(xi-x)(yi-y)=-19.2,其中x=15∑i=15xi,y=15∑i=15yi.
7、 9.(2018全國Ⅰ,文19)某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下: 未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表 日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 頻 數(shù) 1 3 2 4 9 26 5 使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表 日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6
8、) 頻 數(shù) 1 5 13 10 16 5 (1)在下圖中作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖; (2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率; (3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表.) 二、思維提升訓(xùn)練 10.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸: 抽取次序 1 2 3 4 5 6 7
9、 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 9 10 11 12 13 14 15 16 零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 經(jīng)計算得x=116∑i=116xi=9.97,s=116∑i=116(xi-x)2=116(∑i=116xi2-16x2)≈0.212,∑i=116(i-8.5)2≈18.439,∑i=116(xi-x)(i-8.5)=-2.78,其中xi為抽取的第i個零件的尺寸,i=1,2,…
10、,16. (1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小). (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(x-3s,x+3s)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查. (ⅰ)從這一天抽檢的結(jié)果看,是否需對當(dāng)天的生產(chǎn)過程進行檢查? (ⅱ)在(x-3s,x+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標準差.(精確到0.01) 附:樣本(
11、xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=∑i=1n(xi-x)(yi-y)∑i=1n(xi-x)2∑i=1n(yi-y)2.0.008≈0.09. 11.(2018全國Ⅲ,文18)某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖: (1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由; (2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù)m,并將完成
12、生產(chǎn)任務(wù)所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表: 超過m 不超過m 第一種生產(chǎn)方式 第二種生產(chǎn)方式 (3)根據(jù)(2)中的列聯(lián)表,能否在犯錯誤的概率不超過0.01 的前提下認為兩種生產(chǎn)方式的效率有差異? 附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d), P(K2≥k0) 0.050 0.010 0.001 k0 3.841 6.635 10.828 專題能力訓(xùn)練18 統(tǒng)計與統(tǒng)計案例 一、能力突破訓(xùn)練 1.A 解析因為8.333>7.879,由表知7.879對應(yīng)值為0.005,所以在犯錯誤的概率不超過
13、0.5%的前提下認為“愛好該項運動與性別有關(guān)”,故選A. 2.D 解析由頻率分布直方圖可知,這200名學(xué)生每周自習(xí)時間不少于22.5小時的頻率為(0.16+0.08+0.04)×2.5=0.7,故該區(qū)間內(nèi)的人數(shù)為200×0.7=140.故選D. 3.A 解析由題意可得x=70×50+80-60+70-9050=70. 設(shè)收集的48個準確數(shù)據(jù)分別記為x1,x2,…,x48, 則75=150[(x1-70)2+(x2-70)2+…+(x48-70)2+(60-70)2+(90-70)2] =150[(x1-70)2+(x2-70)2+…+(x48-70)2+500], s2=150[(
14、x1-70)2+(x2-70)2+…+(x48-70)2+(80-70)2+(70-70)2] =150[(x1-70)2+(x2-70)2+…+(x48-70)2+100]<75,故s2<75. 4.D 解析由題意,得x=1.5,y=14(m+3+5.5+7)=m+15.54,將(x,y)代入線性回歸方程為y^=2.1x+0.85,得m=0.5. 5.分層抽樣 解析因大量客戶且具有不同的年齡段,分層明顯,故根據(jù)分層抽樣的定義可知采用分層抽樣最為合適. 6.85.3 解析依題意得,將樣本數(shù)據(jù)由小到大排列,中間的兩個數(shù)之和等于85×2=170,因此x=6,樣本數(shù)據(jù)的平均數(shù)等于110(70
15、×2+80×6+90×2+53)=85.3. 7.18 解析抽取比例為601000=350,故應(yīng)從丙種型號的產(chǎn)品中抽取300×350=18(件),答案為18. 8.解(1)由x=30,y=0.4,∑i=15(xi-x)(yi-y)=-19.2,∑i=15(xi-x)2=1000, 得b^=∑i=15(xi-x)(yi-y)∑i=15(xi-x)2=-0.019 2,a^=y?b^x=0.976, 所以y關(guān)于x的回歸直線方程為y=-0.019 2x+0.976. (2)能把保費x定為5元.理由如下:若保費x定為5元,則估計y^=-0.019 2×5+0.976=0.88. 估計該手機
16、廠商在這次活動中因銷售該“手機碎屏險”產(chǎn)生的利潤為 2 000 000×0.88×5-2 000 000×0.88×0.2%×2 000-1 000×1 000 =0.76×106(元)=76(萬元)>70(萬元), 所以能把保費x定為5元. 9.解(1) (2)根據(jù)以上數(shù)據(jù),該家庭使用節(jié)水龍頭后50天日用水量小于0.35m3的頻率為0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48, 因此該家庭使用節(jié)水龍頭后日用水量小于0.35m3的概率的估計值為0.48. (3)該家庭未使用節(jié)水龍頭50天日用水量的平均數(shù)為x1=150(0.05×1+0.15×3+0.25
17、×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48. 該家庭使用了節(jié)水龍頭后50天日用水量的平均數(shù)為x2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35. 估計使用節(jié)水龍頭后,一年可節(jié)省水(0.48-0.35)×365=47.45(m3). 二、思維提升訓(xùn)練 10.解(1)由樣本數(shù)據(jù)得(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)為r=∑i=116(xi-x)(i-8.5)∑i=116(xi-x)2∑i=116(i-8.5)2=-2.780.212×16×18.439 ≈-0.18. 由于|r|<
18、0.25,因此可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小. (2)(ⅰ)由于x=9.97,s≈0.212,由樣本數(shù)據(jù)可以看出抽取的第13個零件的尺寸在(x-3s,x+3s)以外,因此需對當(dāng)天的生產(chǎn)過程進行檢查. (ⅱ)剔除離群值,即第13個數(shù)據(jù),剩下數(shù)據(jù)的平均數(shù)為115(16×9.97-9.22)=10.02, 這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值的估計值為10.02.∑i=116xi2=16×0.2122+16×9.972≈1591.134, 剔除第13個數(shù)據(jù),剩下數(shù)據(jù)的樣本方差為115×(1591.134-9.222-15×10.022)≈0.008, 這條生
19、產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的標準差的估計值為0.008≈0.09. 11.解(1)第二種生產(chǎn)方式的效率更高. 理由如下: ①由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時間至少80分鐘,用第二種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時間至多79分鐘.因此第二種生產(chǎn)方式的效率更高. ②由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間的中位數(shù)為85.5分鐘,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間的中位數(shù)為73.5分鐘.因此第二種生產(chǎn)方式的效率更高. ③由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時間高于80分鐘;用第二種生產(chǎn)方式的工
20、人完成生產(chǎn)任務(wù)平均所需時間低于80分鐘.因此第二種生產(chǎn)方式的效率更高. ④由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間分布在莖8上的最多,關(guān)于莖8大致呈對稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間分布在莖7上的最多,關(guān)于莖7大致呈對稱分布.又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間分布的區(qū)間相同,故可以認為用第二種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時間比用第一種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時間更少.因此第二種生產(chǎn)方式的效率更高. 以上給出了4種理由,考生答出其中任意一種或其他合理理由均可. (2)由莖葉圖知m=79+812=80. 列聯(lián)表如下: 超過m 不超過m 第一種生產(chǎn)方式 15 5 第二種生產(chǎn)方式 5 15 (3)由于K2=40(15×15-5×5)220×20×20×20=10>6.635,所以在犯錯誤的概率不超過0.01的前提下認為兩種生產(chǎn)方式的效率有差異.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案