初二數(shù)學(xué)上冊教案:梯形

上傳人:文*** 文檔編號:20959538 上傳時間:2021-04-21 格式:DOCX 頁數(shù):6 大小:69.23KB
收藏 版權(quán)申訴 舉報 下載
初二數(shù)學(xué)上冊教案:梯形_第1頁
第1頁 / 共6頁
初二數(shù)學(xué)上冊教案:梯形_第2頁
第2頁 / 共6頁
初二數(shù)學(xué)上冊教案:梯形_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《初二數(shù)學(xué)上冊教案:梯形》由會員分享,可在線閱讀,更多相關(guān)《初二數(shù)學(xué)上冊教案:梯形(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 初二數(shù)學(xué)上冊教案:梯形 教學(xué)目標(biāo) 1. 知道梯形、等腰梯形、直角梯形的有關(guān)概念 ; 能說出并證明等腰梯形的兩個性質(zhì) ; 等腰梯形同一底上的兩個角相等 ; 兩條對角線相等。 2. 會運用梯形的有關(guān)概念和性質(zhì)進行有關(guān)問題的論證和計 算。 3. 通過添加輔助線 , 把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題 , 使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想。 教學(xué)模式 問題解決教學(xué)教學(xué)過程 想一想 : 什么樣的四邊形是平行四邊形 ?平行四邊形有哪些性質(zhì) ?學(xué)生回答后 , 教師板書以下關(guān)系圖中的有關(guān)部分 :

2、畫一畫 : 畫一個梯形 , 并指出梯形的上、下底 , 畫出梯形的高。 問題教學(xué) 問題 1: 根據(jù)剛才的畫圖 , 請給梯形下一個定義 , 并說說梯形與平行四邊形的區(qū)別和聯(lián)系。 ( 說明與建議 :(l) 讓學(xué)生自己給梯形下定義 , 有助于訓(xùn)練學(xué)生觀察、概括和語言表述的能 力。如果學(xué)生定義時 , 遺漏了另一組對邊不平行教師可舉及例 (2) 對梯形的定義 , 還可以讓學(xué)生討論以下問題 : 一組對邊 第 1 頁 平行且這組對邊不相等的四邊形是梯形嗎 ?為什么 ?教師可用反證法的思想說理。然后 , 板書完成想一想中的關(guān)系圖 ,

3、 并結(jié)合圖表指出 : 梯形和平行四邊形的區(qū)別和聯(lián)系。 (3) 梯形的高是指夾在兩底間的公垂線段 , 在計算面積時高即為上下兩 底 ( 平行線 ) 間的距離 , 也就是夾在兩底間的公垂線段的長 度。畫高時可以從上底任一點向下底作垂線段, 一般常從上 底的兩端向下底作垂線段可方便地構(gòu)造直角三角形 , 便于計算。 ) 問題 2: 如圖 4.9-1, 在 (1) 中: 四邊形 ABCD的 AD∥BC,AB CD, 且 CD⊥BC;在 (2) 中 , 四邊形 ABCD的 AD∥BC,AB CD,且 AB=CD。 請你給這兩種四邊形命名。 ( 說明與建

4、議 : 學(xué)生說出圖 (l) 的四邊形是直角梯形 , 圖 (2) 是等腰梯形 , 通常不會有困難 ; 教師應(yīng)進一步引導(dǎo)學(xué)生討論 , 在圖 (1) 中 CD⊥BC,那么 CD⊥AD 嗎?(CD⊥AD,且指出 :CD 就是直角梯形的高 ) 當(dāng) CD⊥BC 時 , 另一腰 AB可以垂直 BC嗎 ?為什么 ?( 若 AB⊥BC,那么四邊形 ABCD 就成為矩形了 , 不再是梯形。 ) 在圖 (2) 中 , 上底 AD與下底 BC 能相等嗎 ?( 不能 , 否則四邊形 ABCD成為平行四邊形 , 不再是梯形。 ) 練一練 : 課本例 1 后練習(xí)第 l 、2 題。 問題 3:

5、 觀察圖 4.9-2 中的等腰梯形 ABCD,猜想它還可能具有哪些特殊性質(zhì)。并能證明你的猜想嗎 ? 說明與建議 :(l) 教師要用微笑、點頭、贊嘆、激勵的表情和 第 2 頁 話語來鼓勵學(xué)生大膽猜想。 (2) 學(xué)生可能提出以下猜 想 : ∠B=∠C,∠A=∠D,∠A+∠B= , ∠C+∠D= , 是軸對稱圖形 等等。教師要引導(dǎo)學(xué)生關(guān)注等腰梯形特有的性質(zhì) --- 等腰梯形的底角相等。 (3) 如何證明這個猜想 , 可讓學(xué)生自己思考、探索、交流 , 教師給以引導(dǎo) , 鼓勵證明多樣化 , 如課本第 174 頁的證法。教師可

6、提醒學(xué)生證明過程中用到了夾在平行線間 的平行線段相等這一性質(zhì)。并指出 : 這種證法的實質(zhì)是把一 腰平移 , 從而構(gòu)造出等腰三角形 ; 對于如圖 4.9-2( 作 AE⊥BC,DF⊥BC)所示的證法 , 教師可指出 : 通過作梯形的兩 條高 , 可以構(gòu)造出兩個全等的直三角形等。 問題 4: 如何證明等腰梯形是軸對稱圖形呢 ? ( 說明與建議 : 可讓學(xué)生用折紙的方法 , 確認(rèn)等腰梯形是軸對稱圖形 ; 教學(xué) 中 , 還可引導(dǎo)學(xué)生借助等腰三角形的軸對稱性加以證明 , 如圖 4.9-3, 延長等腰梯形兩腰 BA、 CD相交于點

7、E, 易證△ AED 和△ EBC都是等腰三角形。 EF⊥BC,則 EF⊥AD,EF 所在的直線是兩個等腰三角形 EAD、EBC的對稱軸。由軸對稱圖形可知 , 也是等腰梯形 ABCD的對稱軸。因此 , 等腰梯形是軸對稱圖形 , 有一條對稱軸 , 是過兩底中點的直線。 ) 例題解析 ( 課本例 1) 說明 : 本例的結(jié)論 , 為學(xué)生在討論問題 3 時已提及 , 則可由學(xué)生自已完成證明 , 并概括成為一個文字命題。如學(xué)生討論問題 3 時未提及 , 則可由教師引導(dǎo)學(xué)生猜 第 3 頁 想 , 然后再完成證明。

8、 課堂練習(xí) 1. 課本例 1 后練習(xí)第 3 題。 2. 如圖 4.9-4, 已知等腰梯形 ABCD的腰長為 5cm,上、下底長分別是 6cm和 12cm, 求梯形的面積。 ( 方法一 , 過點 C 作 CE∥AD,再作等腰三角形BCE的高 CF,可知 CF=4cm。然后用梯形面積公式求解 ; 方法二 , 過點 C 和 D 分別作高 CF、 DG,可知 , 從而在 Rt△AGD中求出 高 DG=4cm。 ) 第 4 頁

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!