基于UG的轉(zhuǎn)向機零件清洗器注塑模具設(shè)計【一模兩腔】【說明書+CAD+UG】
基于UG的轉(zhuǎn)向機零件清洗器注塑模具設(shè)計【一模兩腔】【說明書+CAD+UG】,一模兩腔,說明書+CAD+UG,基于UG的轉(zhuǎn)向機零件清洗器注塑模具設(shè)計【一模兩腔】【說明書+CAD+UG】,基于,ug,轉(zhuǎn)向,零件,清洗,注塑,模具設(shè)計,說明書,仿單,cad
年級 專業(yè) 學(xué)號 姓名
Con.guration analysis of .ve-axis machine tools using a generic kinematic model
Abstract:Five-axis machine tools are designed in a large variety of kinematic con.gurations and structures. Regardless of the type of the intended analysis, a kinematic model of the machine tool has to be developed in order to determine the translational and rotational joint movements required to achieve a speci.ed position and orientation of the cutting tool relative to the workpiece. A
generic and uni.ed model is developed in this study as a viable alternative to the particular solutions that are only applicable to individual machine con.gurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of .ve-axis machine tools: the spindle rotating, rotary table, and hybrid type. A numerical measure of total translational joint movement is proposed to evaluate the kinematic performance of a .ve-axis machine tool. The corresponding kinematic analyses have con.rmed the advantages of the popular machine design that employs intersecting rotational axes and the common industrial practice during setup that minimizes the characteristic rotating arm length of the cutting tool and/or workpiece.
# 2004 Elsevier Ltd. All rights reserved.
【Keywords】Con.guration analysis; Kinematic model; Machine design; Machine setup; Five-axis machine tool
Introduction:
Five-axis machining o.ers de.nite advantages over the more common three-axis machining process. Fiveaxis machine tools are often quoted for their increased productivity, accuracy and .exibility in contrast to the three-axis ones [1,2]. Notable e.orts have been taking
place in recent years to overcome some of the inherent drawbacks of .ve-axis machines like more complex programming and post-processing, greater possibility of gouging and collision during cutting, and higher machine costs. Despite these known shortcomings, more and more of these machines are being used in practice. The balance between positioning-only and
continuous .ve-axis machining work has become more equilibrated lately than it was a few years ago [3]. Most research studies on .ve-axis machining have commonly identi.ed the need to develop a model to analyze the kinematic structure of the machine. There are several approaches proposed for this purpose, with some of them transferred from robotics research. One such approach, which is well known and extensively used, was introduced by Denavit and Hartenberg [4] and later modi.ed by Paul [5]. The concept of form shaping functions was also proposed for machine tool kinematic analyses [6]. Some research studies only contained
limited development on this subject, as their focuses were more on other aspects of .ve-axis machining. Suh and Lee [7] used the Denavit–Hartenberg representation to develop a versatile path planning method by which .ve-axis machining can be done by a three-axis machine and rotary table combination. Similar applications have resulted in an adaptive algorithm for tool path optimization [8] and a combined 3D linear and circular interpolation technique for the .ve-axis machining of complex surfaces [9].
The machining accuracy is a resultant of both internal and external factors acting on the cutting process. Evidently, the accuracy of the whole kinematic chain will have a direct in.uence on the overall machining precision. As a result, a number of studies attempted to establish relationships between the inaccuracy in the components of the kinematic chain and the resulting position and orientation error of the cutting tool. One
of the early studies in this area was reported by Kiridena and Ferreira [10]. They suggested a method to outline the e.ects of positioning errors of machine axes on the cutting tool position and orientation in its workspace. Later, Mahbubur et al. [11] showed that the perpendicularity between the rotational axes of a .ve-axis machine signi.cantly a.ected the positioning error at the tool tip. Bohez [12] proposed a new general approach to compensate for systematic errors in a horizontal .ve-axis machine based on the closed loop volumetric error relations.
The common point of almost all of the above-mentioned studies is the fact that a kinematic model of the machine is essential, as the position and orientation of the cutting tool, represented by the cutter location (CL) data and the tool axis vector, have to be converted into machine control coordinates (MCC) for inputting to the CNC machine controller. This conversion is commonly referred to as post-processing. Post-processing for .ve-axis machining is more complex than that for three-axis machining and many parameters require
attention when a full portable post-processor is desired [13]. One of the .rst attempts in post-processor development for .ve-axis machining belonged to Takeuchi and Watanabe [14]. Lee and She [15] developed individual post-processors for three main types of .ve-axis
machines. A post-processing algorithm able to correct erroneous operations for a particular con.guration of the machine tool was proposed by Jung et al. [16]. The concept of form shaping functions was used by Cheng and She [17] to develop forward and reverse postprocessors.
利用一般的運動學(xué)模式對五軸機床的結(jié)構(gòu)進行分析
摘要:五軸機床的設(shè)計常用于許多種類的運動學(xué)配置和結(jié)構(gòu)中。先不管將要分析的這種類型,為了確定實現(xiàn)切削刀具相對工件的的具體位置和方向所必須的平移和旋轉(zhuǎn)合成運動,一種機床的運動學(xué)模型將得到闡述。在本次研究中,一種通用和統(tǒng)一的模型作為可變選擇的特殊的僅運用于單獨機器配置的解決方案將得到闡述。這種通用的模型可用于檢驗兩旋轉(zhuǎn)連接件在三種主要的五軸機床運動鏈中的可行性:旋轉(zhuǎn)軸,旋轉(zhuǎn)工作臺以及混合類型。一種完整的平移合成運動數(shù)字測量已經(jīng)提出用于估計五軸機床的運動性能。相對應(yīng)的運動分析已經(jīng)證實了利用交叉旋轉(zhuǎn)軸和在設(shè)置中最小化典型的切削刀具和工件旋轉(zhuǎn)臂長度共同的工業(yè)實踐的普及的機械設(shè)計的效益。
緒論:
五軸加工相對更普遍的三軸加工來說提供有限的優(yōu)點,五軸機床由于它相對三軸機床有不斷上升的生產(chǎn)效率、準確性、靈活性而得到利用。為了克服五軸機床存在一些潛在缺點,如復(fù)雜的編程以及后處理,在切削過程中更大的刨銷和沖突的可能性,以及更高的加工費用,已經(jīng)付出了很大的努力。盡管這些已知的缺點,但是在實際生產(chǎn)過程中越來越多的這種機床得到廣泛的運用。目前平衡的定位以及連續(xù)五軸加工之間的平衡已經(jīng)比以前變得更加相稱[3].。
大多數(shù)對五軸加工的研究已普遍認識到建立一個模型來分析機器運動學(xué)結(jié)構(gòu)的必要性。為此可以提出幾種方法,其中一些方法是從機器人研究中轉(zhuǎn)移過來的。有這樣一種方法是眾所周知和廣泛使用的,它是由Denavit和Hartenberg 引進的[4],并且后來由保羅修改[5]而成的。這種成型功能的概念也是為機床運動學(xué)分析而提出的。有些研究只包含這個主題的有限發(fā)展,正如它們更加關(guān)注五軸加工的其它方面。Suh和Lee [7]利用Denavithartenberg表達方法來闡述一個通用的路徑規(guī)劃方法,通過這種方法,五軸加工能夠通過三軸加工和轉(zhuǎn)盤的組合來實現(xiàn)。 類似的應(yīng)用可為復(fù)雜表面的五軸加工產(chǎn)生自適應(yīng)刀具軌跡優(yōu)化[8]并結(jié)合三維直線和圓弧插補技術(shù)。
加工精度是作用在切削過程中內(nèi)部和外部因素共同作用的結(jié)果。由此可見,整個運動鏈的精度都將對整體加工精度有直接的影響。因此, 多項研究試圖在運動鏈構(gòu)件的誤差及由此產(chǎn)生的方向和位置誤差之間建立關(guān)系。在這個領(lǐng)域的研究最早由kiridena和費雷拉[10]報道。 他們提議一種概述機床主軸定位誤差對刀具在工件上的位置以及方向影響的方法。后來,mahbuburetal〔11〕表明五軸機床相互垂直的轉(zhuǎn)軸對刀尖的定位誤差有很大的影響,bohez[12]提出了一種新的常規(guī)的做法以補償基于閉環(huán)容積誤差的關(guān)系橫向五軸機床的系統(tǒng)誤差。
幾乎上述的所有研究都有這樣一個共同點:機器的運動學(xué)模型是至關(guān)重要的,刀具的方向和位置是通過切刀位置(CL)的數(shù)據(jù)和刀具軸矢量來表示的, 必須轉(zhuǎn)換成機器控制座標(mcc)輸入到數(shù)控機床控制器。 這種轉(zhuǎn)換是通常所說的后處理。五軸加工的后處理比三軸加工的后處理更加復(fù)雜及當需要一個完全便攜式后處理器時多種參數(shù)需要注意。五軸機床后處理器開發(fā)其中的一個嘗試屬于Takeuchi和 Watanabe [14]。Lee 和 She [15] 為三大類五軸機床開發(fā)了個別后處理器。 由Jung et al. [16]提出的后處理算法能為特別配置的機床糾正錯誤的操作。Cheng和She使用成型功能的概念去開發(fā)前向和反向后處理器。然而,這些研究的問題沒有一個能夠闡述一種通用和統(tǒng)一的應(yīng)用于五軸機床結(jié)構(gòu)的運動學(xué)模型。后處理器實際上是帶有五軸功能的商業(yè)計算機輔助制造軟件的必須單元。在主要的軟件系統(tǒng)之間的差異是由裴etal合成的[18]。雖然這些商業(yè)產(chǎn)品中有些可能包括一種通用的機器運動學(xué)模型這種情況是可能的,但是沒有現(xiàn)有相關(guān)文獻資料提交正式回應(yīng).
除了先前提到的誤差分析和后處理,另一種五軸機床通用運動學(xué)模型的應(yīng)用是與一種滿足加工中特別要求的最優(yōu)機器配置的設(shè)計相聯(lián)系的。許多關(guān)于這個話題的參考文獻從產(chǎn)業(yè)上[2,3,19]和理論上的觀點上看都存在于相關(guān)的文獻資料中。這些設(shè)計應(yīng)用是非常重要的,因為正如李素etal. 〔20〕提出的,盡管機器有一些相似的五軸控制,但是并不是所有的五軸部件都能在一個特定的機器上加工。在五軸機床運動鏈設(shè)計的一個研究中,Bohez為這些機器提出了全面的分類主題。從理念上說,從運動學(xué)觀點的角度來看,五軸機床與有五個自由度的機器人是等價的,按照這條路線的想法,五軸機器能夠通過任意放置運動鏈.中的六個環(huán)節(jié)中的五個平移和旋轉(zhuǎn)接頭來建立。在實踐中,幾乎所有的五軸機床都有三個平移和兩個轉(zhuǎn)動關(guān)節(jié)[21]。這最可能歸因于這樣一個事實:這個組合滿足的最佳的幾何和運動的限制。.
最早的但仍然廣泛采用的一種對五軸機床配置的分類標準是基于運動鏈中兩個旋轉(zhuǎn)關(guān)節(jié)的位置。 兩個旋轉(zhuǎn)關(guān)節(jié)可以同時適用于主軸和機器的工作臺,或者一個用于主軸,一個用于工作臺。Ishizawa et al.[22]是最先概括三種基本類型的機器的結(jié)構(gòu)性差異的研究者中的一員。其中,其他研究者[10,11,14-17,20,21]隨后使用相同的標準,突出了這三個機器類型的鮮明的行為特征。業(yè)內(nèi)人士還研究了適合每臺機器類型的應(yīng)用[2,3,19]。Warkentin et al.提出了一種逆向和正向運動學(xué)分析的系統(tǒng)性的方法,它是關(guān)于這三種主要類型的五軸機床的方法[23]。五軸機床可能的運動學(xué)配置的最大數(shù)量與許多研究者所報道的不一致[22,24,25]。三種基本機器配置的績效評估方法被提議為加工一個正方形的工件的最大的線性運動區(qū)域[24,25],相似的結(jié)果已經(jīng)有報道。
很顯然,通用五軸機床運動學(xué)模型對后處理、設(shè)計、系統(tǒng)化和加工誤差分析來說將比包含每臺機器配置所設(shè)定的CL數(shù)據(jù)和MCC的換算關(guān)系的特殊解決方案更為有效。這個通用模型和選定的應(yīng)用機械設(shè)計工作將在以下幾節(jié)闡述。
- 6 -
收藏
編號:20843981
類型:共享資源
大?。?span id="w5quq4r" class="font-tahoma">14.67MB
格式:ZIP
上傳時間:2021-04-19
40
積分
- 關(guān) 鍵 詞:
-
一模兩腔
說明書+CAD+UG
基于UG的轉(zhuǎn)向機零件清洗器注塑模具設(shè)計【一模兩腔】【說明書+CAD+UG】
基于
ug
轉(zhuǎn)向
零件
清洗
注塑
模具設(shè)計
說明書
仿單
cad
- 資源描述:
-
基于UG的轉(zhuǎn)向機零件清洗器注塑模具設(shè)計【一模兩腔】【說明書+CAD+UG】,一模兩腔,說明書+CAD+UG,基于UG的轉(zhuǎn)向機零件清洗器注塑模具設(shè)計【一模兩腔】【說明書+CAD+UG】,基于,ug,轉(zhuǎn)向,零件,清洗,注塑,模具設(shè)計,說明書,仿單,cad
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。