2017全國一卷理科數(shù)學(xué)高考真題及答案-
《2017全國一卷理科數(shù)學(xué)高考真題及答案-》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017全國一卷理科數(shù)學(xué)高考真題及答案-(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2017年普通高等學(xué)校招生全國統(tǒng)一考試 理科數(shù)學(xué) 一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。 1.已知集合A={x|x<1},B={x|},則 A. B. C. D. 2.如圖,正方形ABCD內(nèi)的圖形來自中國古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對稱.在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自黑色部分的概率是 A. B. C. D. 3.設(shè)有下面四個(gè)命題 :若復(fù)數(shù)滿足,則; :若復(fù)數(shù)滿足,則; :若復(fù)數(shù)滿足,則; :若復(fù)數(shù),則. 其中的真命題為 A.
2、 B. C. D. 4.記為等差數(shù)列的前項(xiàng)和.若,,則的公差為 A.1 B.2 C.4 D.8 5.函數(shù)在單調(diào)遞減,且為奇函數(shù).若,則滿足的的取值范圍是 A. B. C. D. 6.展開式中的系數(shù)為 A.15 B.20 C.30 D.35 7.某多面體的三視圖如圖所示,其中正視圖和左視圖都由正方形和等腰直角三角形組成,正方形的邊長為2,俯視圖為等腰直角三角形.該多面體的各個(gè)面中有若干個(gè)是梯形,這些梯形的面積之和為 A.10 B.12 C.14 D.16 8.右面程序框圖是為了求出滿足3n?2n>1000
3、的最小偶數(shù)n,那么在和兩個(gè)空白框中,可以分別填入 A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A1 000和n=n+1 D.A1 000和n=n+2 9.已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是 A.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線C2 B.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線C2 C.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線C2 D.把C1上各點(diǎn)
4、的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線C2 10.已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為 A.16 B.14 C.12 D.10 11.設(shè)xyz為正數(shù),且,則 A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件。為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)
5、問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推。求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪。那么該款軟件的激活碼是 A.440 B.330 C.220 D.110 二、填空題:本題共4小題,每小題5分,共20分。 13.已知向量a,b的夾角為60,|a|=2,|b|=1,則| a +2 b |= . 14.設(shè)x,y滿足約束條件,則的最小值為 . 15.已知雙曲線C:(a>0,b>0)的右頂點(diǎn)為A,以A為圓心,b為半
6、徑做圓A,圓A與雙曲線C的一條漸近線交于M、N兩點(diǎn)。若∠MAN=60,則C的離心率為________。 16.如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當(dāng)△ABC的邊長變化時(shí),所得三棱錐體積(單位:cm3)的最大值為_______。 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第
7、22、23題為選考題,考生根據(jù)要求作答。 (一)必考題:共60分。 17.(12分)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為 (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周長. 18.(12分) 如圖,在四棱錐P-ABCD中,AB//CD,且. (1)證明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值. 19.(12分) 為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)
8、線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布. (1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望; (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查. (ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性; (ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 經(jīng)計(jì)算得,
9、,其中為抽取的第個(gè)零件的尺寸,. 用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01). 附:若隨機(jī)變量服從正態(tài)分布,則, ,. 20.(12分) 已知橢圓C:(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三點(diǎn)在橢圓C上. (1)求C的方程; (2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn)。若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn). 21.(12分) 已知函數(shù)ae2x+(a﹣2) ex﹣x. (1)討論的單調(diào)性; (2
10、)若有兩個(gè)零點(diǎn),求a的取值范圍. (二)選考題:共10分。請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分。 22.[選修4―4:坐標(biāo)系與參數(shù)方程](10分) 在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為 . (1)若a=?1,求C與l的交點(diǎn)坐標(biāo); (2)若C上的點(diǎn)到l的距離的最大值為,求a. 23.[選修4—5:不等式選講](10分) 已知函數(shù)f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值
11、范圍. 2017年普通高等學(xué)校招生全國統(tǒng)一考試 理科數(shù)學(xué)參考答案 一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。 1. A 2.B 3.B 4.C 5.D 6.C 7.B 8.D 9.D 10.A 11.D 12.A 二、填空題:本題共4小題,每小題5分,共20分。 13. 14.-5 15. 16. 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。 (一)必考題:共60分。 17.(12分)△ABC的內(nèi)角A
12、,B,C的對邊分別為a,b,c,已知△ABC的面積為 (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周長. 解:(1) 由題意可得, 化簡可得, 根據(jù)正弦定理化簡可得:。 (2) 由, 因此可得, 將之代入中可得:, 化簡可得, 利用正弦定理可得, 同理可得, 故而三角形的周長為。 18.(12分) 如圖,在四棱錐P-ABCD中,AB//CD,且. (1)證明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值. (1)證明: , 又,PA、PD都在平面PAD內(nèi), 故而可得。
13、 又AB在平面PAB內(nèi),故而平面PAB⊥平面PAD。 (2)解: 不妨設(shè), 以AD中點(diǎn)O為原點(diǎn),OA為x軸,OP為z軸建立平面直角坐標(biāo)系。 故而可得各點(diǎn)坐標(biāo):, 因此可得, 假設(shè)平面的法向量,平面的法向量, 故而可得,即, 同理可得,即。 因此法向量的夾角余弦值:。 很明顯,這是一個(gè)鈍角,故而可得余弦為。 19.(12分) 為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布. (1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其
14、尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望; (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查. (?。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性; (ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 經(jīng)計(jì)算得,,其中為抽取的第個(gè)零件的尺寸,. 用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是
15、否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01). 附:若隨機(jī)變量服從正態(tài)分布,則, ,. 解:(1) 由題意可得,X滿足二項(xiàng)分布, 因此可得 (2) 由(1)可得,屬于小概率事件, 故而如果出現(xiàn)的零件,需要進(jìn)行檢查。 由題意可得, 故而在范圍外存在9.22這一個(gè)數(shù)據(jù),因此需要進(jìn)行檢查。 此時(shí):, 。 20.(12分) 已知橢圓C:(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三點(diǎn)在橢圓C上. (1)求C的方程; (2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn)。若直線P2A與直線P2B的
16、斜率的和為–1,證明:l過定點(diǎn). 解:(1) 根據(jù)橢圓對稱性可得,P1(1,1)P4(1,)不可能同時(shí)在橢圓上, P3(–1,),P4(1,)一定同時(shí)在橢圓上, 因此可得橢圓經(jīng)過P2(0,1),P3(–1,),P4(1,), 代入橢圓方程可得:, 故而可得橢圓的標(biāo)準(zhǔn)方程為:。 (2)由題意可得直線P2A與直線P2B的斜率一定存在, 不妨設(shè)直線P2A為:,P2B為:. 聯(lián)立, 假設(shè),此時(shí)可得: , 此時(shí)可求得直線的斜率為:, 化簡可得,此時(shí)滿足。 當(dāng)時(shí),AB兩點(diǎn)重合,不合題意。 當(dāng)時(shí),直線方程為:, 即,當(dāng)時(shí),,因此直線恒過定點(diǎn)。 21.(12分) 已知函數(shù)a
17、e2x+(a﹣2) ex﹣x. (1)討論的單調(diào)性; (2)若有兩個(gè)零點(diǎn),求a的取值范圍. 解: (1)對函數(shù)進(jìn)行求導(dǎo)可得。 當(dāng)時(shí),恒成立,故而函數(shù)恒遞減 當(dāng)時(shí),,故而可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞增。 (2)函數(shù)有兩個(gè)零點(diǎn),故而可得,此時(shí)函數(shù)有極小值, 要使得函數(shù)有兩個(gè)零點(diǎn),亦即極小值小于0, 故而可得,令, 對函數(shù)進(jìn)行求導(dǎo)即可得到,故而函數(shù)恒遞增, 又,, 因此可得函數(shù)有兩個(gè)零點(diǎn)的范圍為。 (二)選考題:共10分。請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分。 22.[選修4―4:坐標(biāo)系與參數(shù)方程](10分) 在直角坐標(biāo)系xOy中,曲
18、線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為 . (1)若a=?1,求C與l的交點(diǎn)坐標(biāo); (2)若C上的點(diǎn)到l的距離的最大值為,求a. 解: 將曲線C 的參數(shù)方程化為直角方程為,直線化為直角方程為 (1)當(dāng)時(shí),代入可得直線為,聯(lián)立曲線方程可得:, 解得或,故而交點(diǎn)為或 (2)點(diǎn)到直線的距離為, 即:, 化簡可得, 根據(jù)輔助角公式可得, 又,解得或者。 23.[選修4—5:不等式選講](10分) 已知函數(shù)f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范圍. 解: 將函數(shù)化簡可得 (1) 當(dāng)時(shí),作出函數(shù)圖像可得的范圍在F和G點(diǎn)中間, 聯(lián)立可得點(diǎn),因此可得解集為。 (2) 即在內(nèi)恒成立,故而可得恒成立, 根據(jù)圖像可得:函數(shù)必須在之間,故而可得。
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊(duì)伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會(huì)長長的路慢慢地走