定柱式懸臂起重機結(jié)構(gòu)設(shè)計與分析含proe三維及16張CAD圖+說明書
定柱式懸臂起重機結(jié)構(gòu)設(shè)計與分析含proe三維及16張CAD圖+說明書,定柱式,懸臂,起重機,結(jié)構(gòu)設(shè)計,分析,proe,三維,16,cad,說明書,仿單
****學(xué)院****屆畢業(yè)設(shè)計中英文翻譯
Crane Work Needs More Technique
The invention of crane has greatly increased people’s work efficiency .People can use crane to handle with huge articles which used to be taken a long time to do, especially in a small are The bridge type hoist crane is required to handle with huge accessory? or?huge device.
The birth worldwide industry early post-war years, the crane industry came to an aImost complete standstill. By the end of the decade, however, crane construction had diversified and spread around the world and the industry seemed infused with newfound energy that left it flourishing as never before. Lightweight cranes that arrived on site ready for use came to dominate construction sites as people realised the advantages of not having to dismantle them between jobs. These new designs did away with the need to have other lifting equipment assisting during rigging - a big contrast to the cumbersome rigging of previous designs. But, before all this could happen came the horrors of the Second World War. By 1940 of Europe was completely caught up in the conflict. By the time the war ended, Europe and other parts of the world had been subjected to extraordinary political, economic and social changes that would affect the entire fabric of society, including the construction and crane industries, for many decades to come. In the US, steam locomotives were starting to be replaced by diesel - by 1953 more than 50 per cent of all locomotives would be diesel. During the war the mass production of excavators, scrapers and cranes continued. 1940, for example, saw Thew launch the new 'Lorain Motocrane' series. This consisted of three cranes which, for the first time in history, were mounted on chassis built by the crane manufacturer itselfi The smallest crane, the MC-2, could lift 7.6 tonnes, the MC-2 9.9 tonnes and the MC-3 13.5 tonnes. These cranes were delivered to the army by the thousand, and were also mounted on portals for use as harbour cranes (the MC-4 model). The war had, of course, taken its toll on the number of able-bodied men available to work in the crane industry and there was a serious shortage of good crane drivers. At Thew, newcomers were taught crane operations over a two-day course presented by A.C Burch, an experienced mechanic and graduate of the Naval Academy, and L.K Jenkins. These two gentlemen were probably the originators of 'operator training' as we know it today. As they had actually designed the Motocrane, both knew it inside out and were pleased to pass on this knowledge.
When the Japanese National Railways committed itself to buying the prototype of a machine designed to remove railway clips, the tide turned. The machine worked splendidly and iVlasuo Tadano toured Japan showing on 35 millimetre film just what it could do. He collected numerous orders for the machine along the way and at the same time seems to have been an early pioneer of the company videos so beloved by today's marketing professionals!
Other countries were also building noteworthy cranes. Italy, in particular, was developing into a source of innovative ideas for the industry.In1948 in Legnano,near Milan,Carlo Raimodi built his first slewing tower crane,a classic top slewer The company was originally established in 1863 as a foundry and had, until making its crane debut, built machines and components for the millwright and other industries. There was now a worldwide boom in construction and this attracted the attention of specialist equipment manufacturers, many of whom followed the launch of crane ranges with the introduction of concrete mixing equipment. This combination of equipment was supplied in a variety of forms: Reich, Ibag and Liebherr, for example, supplied cranes and concrete mixing machines designed to be used together. Important slewing tower crane manufacturer.
The bridge type hoist crane car consists of protmoted organization,the car frame,the car movement organization,hoisting mechanisms and so on. Its operation structure is composed of reducer,the driving wheel group,the driven wheel group,the transmission shaft and some connect fitting. The core of this structure is the design of the reducer.
This bridge type hoist crane is be used to the hydroelectric power station. It is installed in the expanded workshop of Fengman water and electricity station.It is used to installing,examining and repairing the water-turbine generator set and its accessorial equipments.the equipments in the water and electricity station are large?or?medium-size. These equipments have a high request on the load of bridge type hoist crane , so they also have a high request on the capability of the reducer.
Grab bridge bridge crane is running on the elevated track, the car driven by the lifting of materials crawl grab a bridge-crane. Bridge laying on both sides along the elevated track on the vertical run, lifting trolley along the bridge in laying the track on the horizontal run, a rectangular scope of work, you can make full use of space below the bridge lifting material from Ground equipment hindered. Grab bridge cranes widely used in power plants, Mei Chang, and other needs of bulk material handling of the occasion, because of the heavy equipment, transportation difficulties installation, testing the quality of their products in general need in the field. Therefore, control equipment requirements for wiring, small size and portability. And the use of fixed-site conditions, also called a random testing equipment manual control functions to ensure the safety of operation. With the lifting of the transport requirements of the mechanical control continuously improve, more and more advanced means of control. At present the domestic bridge crane control system requires people at the scene to control, control methods are backward. In small and medium-sized crane, the most direct control over the use of controllers, car running, Lord, vice hook upgrade, dropped weights and speed
Crane work needs more technology. Construction of tower cranes are the main vertical transportation equipment and also a measure of construction companies and equipment strength of the important logo, in today's increasingly competitive construction market, to meet the construction needs of many construction companies have bought the tower crane. With the tower crane at the construction site of the widely used by the tower crane accident also caused more and more to people's lives and property brought about great losses. According to national statistics, the departments concerned, the tower crane accident rate reached 2.77 percent. Its security problem is still the urgency of the construction
Loose training, testing and oversight requirements for the people who work around construction cranes have fostered a false sense of security in our industry. The recent deadly tower-crane collapse at a congested New York
City building site should be a wake-up call for us to question and step up our current safety practices.
Training and testing is king when it comes to safety. But the construction industry is putting unqualified personnel in the seats of construction cranes, even with today's testing. In many places, no experience is necessary after passing a standardized test. One week of study will give some people enough knowledge to pass a certification examination, and then they can jump into the cab of a crane.
Imagine that a commercial airline pilot had the same training as a certified crane operator. How would you feel the next time you decided to fly? In California, it takes more hours of training to wield a pair of scissors in a hair salon than to operate potentially dangerous lifting machinery. How does this make sense?
Riggers and signal persons also need standard training and testing to ensure safety under the hook. Employers usually allow any craft to signal a crane on a jobsite, despite best practices that require only qualified people do so. How is it then that uncertified and untrained people are allowed to signal and rig under the hook of a licensed or certified operator?
Tower cranes are particularly risky as urban sites become more congested, and the risk of a catastrophic event is very high during climbing operations. Yet most tower-crane climbing crews are trained in a non-traditional manner, via secondhand knowledge that has been passed down over time. The problem with this type of hand-me-down knowledge is that it changes over the years, leaving out small-but-important details along the way. This "osmosis" of knowledge leads crews to develop their own tricks for climbing cranes, often forsaking basic safety in an attempt to save time and energy.
In many cases, there are no safety devices or alarms to warn of a serious problem. Climbing crews are subjected to pressures that affect safety-critical decision-making. It is not uncommon for climbs to continue with damaged or leaking hydraulic systems, out-of-adjustment or jammed guide rollers, often working in the dark and for extended hours. This "MacGyver" method of climbing, where every jump becomes a new adventure, should not be the norm.
Climbing-frame designs vary among manufacturers, but the operational steps are similar in principle. The climbing process is relatively straightforward, with a mixture of physical work and technical procedure. It is not complex; it is more about knowing the proper sequence of what needs to be done and then following the steps, one by one, making sure each step has been successfully completed before moving onto the next. It is essential that everyone know exactly what is going on and what the dangers are at every stage.
When these needs are satisfied, crane operations should be carried out in strict accordance with the manufacturers' instructions, engineering principals and governmental laws. But industry stakeholders and lawmakers need to step up their lax standards to protect the public. New York City residents, who have seen their homes turned into dust and debris, would be shocked at the way the industry deals with these issues.
That's why the industry needs standardized training, testing and oversight for this work, including a practical assessment of competence. Technicians should have model-specific training directly from the manufacturer, along with a level of practical experience. Inspectors, too, should be required to have specific technical training. They should be independent from all aspects of installation and maintenance to allow for objective decisions. Key personnel on erection crews should have standard training and testing.
第 9頁 第 9頁
起重機工作需要很多科技
起重機的出現(xiàn)大大提高了人們的勞動效率,以前需要許多人花長時間才能搬動的大型物件現(xiàn)在用起重機就能輕易達到效果,尤其是在小范圍的搬動過程中起重機的作用是相當(dāng)明顯的。
戰(zhàn)后的前幾年,世界性的工業(yè)誕生了,起重機行業(yè)幾乎完全停止。然而到這個年代末,起重機的建造變得多元化并傳播到世界各地,它的前所未有的蓬勃發(fā)展似乎整個工業(yè)注入了新能源。輕型起重機投入到工作地點并準(zhǔn)備作為主要機械,因為人們意識到了在工作間不用拆除他們的的優(yōu)點。這些新的設(shè)計也不再需要其他起重設(shè)備協(xié)助操縱——相比以前在安裝前要進行繁瑣的設(shè)計。但是,在這一切之前發(fā)生了恐怖的第二次世界大戰(zhàn)。到1940年,歐洲完全陷入了戰(zhàn)爭中。到戰(zhàn)爭結(jié)束后的幾十年來,歐洲和世界其他地區(qū)發(fā)生了巨大的政治,經(jīng)濟和社會變化,將影響整個社會結(jié)構(gòu),包括建造業(yè)和起重機行業(yè)。在美國,蒸汽機已開始改為柴油機——到1953年超過百分之五十的機車將使用柴油機。戰(zhàn)爭期間,挖掘機,鏟運機和起重機的大規(guī)模生產(chǎn)在繼續(xù)。例如1940年,看到Thew推出新的'Lorain Motocrane'系列。這其中包括三種起重機,是歷史上首次自身安裝了底盤的起重機。最小的MC - 2 ,起重量達7.6噸, MC – 2起重量為9.9噸,MC – 3起重量為13.5噸。這些起重機許多被用于軍隊,有的還安裝在港口用作港灣式起重機(在MC - 4型) 。當(dāng)然,這場戰(zhàn)爭已經(jīng)削弱了能在起重機行業(yè)工作的健壯的男人的數(shù)量,并且優(yōu)秀的起重機司機嚴(yán)重短缺。在Thew ,一位畢業(yè)于美國海軍學(xué)院的經(jīng)驗豐富的技工A C Burch和L K Jenkins進行了為期兩天的起重機業(yè)務(wù)課程的教授。這兩位紳士好比是我們今天所知的“經(jīng)營者培訓(xùn)”的創(chuàng)始人。他們實際上已設(shè)計了動力起重機,都深深地了解起重機,并很高興傳授這方面的知識。
當(dāng)日本國家鐵路公司致力于采購一種旨在搬動鋼軌扣板的原型機,潮流逆轉(zhuǎn)。該設(shè)備工作極為出色。iVlasuo Tadano環(huán)游日本,用35毫米的電影展示該設(shè)備的強大用途。沿路上,他獲取了大量訂單。同時,他好像成為當(dāng)今市場營銷專家所寵愛的公司影像傳播的先驅(qū)!
其他國家也在大力發(fā)展起重機。特別是意大利,逐漸發(fā)展成為該行業(yè)的創(chuàng)新基地。1948年Carlo Raimodi在米蘭附近的Legnano,首次建造了回轉(zhuǎn)塔式起重機,一種經(jīng)典的頂端回轉(zhuǎn)起重機。公司最初成立于1863年,在生產(chǎn)起重機之前,是一間鑄造廠并為技工和其他行業(yè)生產(chǎn)機械設(shè)備。當(dāng)時全球建筑業(yè)空前繁榮,吸引了專業(yè)設(shè)備制造商的注意。其中許多公司在推廣起重機后,推出了混凝土攪拌設(shè)備。提供了多種不同組合,例如,Reich,Ibag和Liebherr設(shè)計開發(fā)了起重機與混凝土攪拌設(shè)備一起使用的組合。
橋式起重機小車運行機構(gòu)設(shè)計主要包括起升機構(gòu)、小車架、小車運行機構(gòu)、吊具等部分。其中的小車運行機構(gòu)主要由減速器、主動輪組、從動輪組、傳動軸和一些連接件組成。橋式起重機是水電站橋式起重機,安裝于豐滿水電站擴建工程廠房內(nèi),用于水輪發(fā)電機組及其附屬設(shè)備的安裝和檢修工作。水電站內(nèi)設(shè)備一般都是大中型設(shè)備,對橋式起重機的載荷要求較高,所以對減速器性能要求較高。
橋式抓斗起重機是橋架在高架軌道上運行,由起重小車帶動抓斗抓取物料的一種橋架型起重機。橋架沿鋪設(shè)在兩側(cè)高架上的軌道縱向運行,起重小車沿鋪設(shè)在橋架上的軌道橫向運行,構(gòu)成矩形的工作范圍,就可以充分利用橋架下面的空間吊運物料,不受地面設(shè)備的阻礙。橋式抓斗起重機廣泛應(yīng)用于電廠、煤廠等需要散料裝卸的場合,由于該設(shè)備笨重,運輸安裝困難,對其產(chǎn)品質(zhì)量檢測一般需要在現(xiàn)場進行。所以要求控制設(shè)備接線方便,體積小便于攜帶。又由于使用現(xiàn)場條件不動,還要求檢測設(shè)備有隨機手動控制功能,以保證運行時的安全。隨著對起重運輸機械控制要求的不斷提高,控制手段也越來越先進。目前國內(nèi)的橋式起重機控制系統(tǒng)都需要人在現(xiàn)場進行控制,控制方式都比較落后。在中小型起重機中, 大都采用控制器直接控制大、小車運行, 主、副鉤提升、下降重物及調(diào)速。
塔式起重機是建筑施工垂直運輸?shù)闹饕O(shè)備,也是衡量一個建筑施工企業(yè)裝備實力的重要標(biāo)識,在當(dāng)今競爭日益激烈的建筑市場,為滿足施工需要,很多施工企業(yè)都購置了塔式起重機。隨著塔式起重機在施工現(xiàn)場的廣泛使用,由塔式起重機引發(fā)的傷亡事故也越來越多,給人民的生命財產(chǎn)帶來重大損失。據(jù)國內(nèi)有關(guān)部門統(tǒng)計資料表明,塔式起重機的事故率已達2.77%。其安全問題仍然是建筑施工中的憂患。
松散的培訓(xùn),測試和監(jiān)督的要求, 周圍的建筑起重機給這些工作的人樹立了一種虛假的安全感,在我們的行業(yè)。最近塔式起重機倒塌在一個繁忙的紐約市建筑地盤應(yīng)敲響警鐘,提醒我們問題的存在,并加強我們目前安全的做法。
當(dāng)談到安全問題時,訓(xùn)練和測試是關(guān)鍵。不過,建造業(yè)是把不合格人員放在建筑起重機的駕駛位上,甚至沒有通過今天的測試。在許多地方,沒有任何經(jīng)驗必須合格的通過標(biāo)準(zhǔn)化的測試。一周的學(xué)習(xí)將給予一些人足夠的知識足以通過認(rèn)證考試,然后他們可以跳轉(zhuǎn)到的起重機的駕駛室。
想象一下一個商業(yè)航空公司飛行員和一個認(rèn)證的起重機操作員有相同的訓(xùn)練。你會如何感覺,下一次你決定要坐飛機?在加利福尼亞州,掌握一對剪刀在頭發(fā)沙龍比操作有潛在危險的起重機械需要更多的時間訓(xùn)練。如何,這是否合理?
裝配工人和發(fā)信號的人也需要標(biāo)準(zhǔn)的培訓(xùn)和測試,以確保安全下鉤。雇主通常允許任何工人發(fā)信號指揮起重機上工地 ,盡管最佳做法是需要合格的人這樣做。怎么能允許那么無證和未受過訓(xùn)練的人來代替有工作證或經(jīng)核證的操作者呢?
塔式起重機是特別危險的,尤其是在市區(qū)用地變得更加擁擠時。攀登行動更是一個風(fēng)險的行動,其災(zāi)難性非常高。然而,大多數(shù)塔式起重機攀登員的訓(xùn)練,在一個非傳統(tǒng)的方式,通過二手知識已流傳一段時間。問題與這種類型的現(xiàn)成的知識是,多年來,留下來的非常少,但最重要的細節(jié)卻丟失了。這種“滲透”的知識,導(dǎo)致操作者只能發(fā)展自己的技巧攀登起重機,往往放棄基本的安全,企圖以節(jié)省時間和能源.
在許多情況下沒有安全裝置或警報來提醒嚴(yán)重的問題的存在。攀登人員容易遭受到影響安全性至關(guān)重要的決策所帶來的壓力。攀登時,使用損壞或泄漏的液壓系統(tǒng),沒有任何的調(diào)整,這并不鮮見。在黑暗中工作和延長工作時間是時有發(fā)生的。這種攀登方法,其中的每一次攀登都會成為新的冒險,不應(yīng)該作為規(guī)范被采納。
攀爬架的設(shè)計,在制造商之間存在不同,但設(shè)計的步驟在原則上是相似的。攀登過程中是相對比較明了的,配合著的體力勞動和技術(shù)程序。這是并不復(fù)雜,它是更多地了解知道正確的序列需要做什么,然后按照下列步驟,一個又一個,確保每一步在做下一步前成功完成。這是十分重要,每個人都清楚的知道事情進展的怎么樣,在每一個階段存在什么樣的危險。
當(dāng)這些需要得到滿足,起重機作業(yè)應(yīng)進行嚴(yán)格按照有關(guān)制造商的指示,工程原則和政府的法律。但業(yè)內(nèi)人士和國會議員,要加強他們的寬松標(biāo)準(zhǔn),以保障公眾利益??吹阶约旱募覉@變成了塵埃和碎片的紐約市居民,會對處理這些問題的方式感到震驚。
這就是為什么業(yè)界需要規(guī)范的培訓(xùn),測試和監(jiān)督,其中包括一個實際的評估能力。技術(shù)人員應(yīng)該隨著實際經(jīng)驗的提升,直接從制造商哪里獲得標(biāo)準(zhǔn)訓(xùn)練。視察員同樣也也須有具體的技術(shù)培訓(xùn)。他們應(yīng)獨立于安裝和維修的各方面,這由客觀決定。架設(shè)的關(guān)鍵人員應(yīng)該有標(biāo)準(zhǔn)的訓(xùn)練和測試.
收藏