(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 立體幾何與空間向量 第2講 空間中的平行與垂直課件 理.ppt
《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 立體幾何與空間向量 第2講 空間中的平行與垂直課件 理.ppt》由會員分享,可在線閱讀,更多相關(guān)《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 立體幾何與空間向量 第2講 空間中的平行與垂直課件 理.ppt(53頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第2講空間中的平行與垂直,專題四立體幾何與空間向量,板塊三專題突破核心考點(diǎn),,考情考向分析,1.以選擇題、填空題的形式考查,主要利用平面的基本性質(zhì)及線線、線面和面面平行和垂直的判定定理與性質(zhì)定理對命題的真假進(jìn)行判斷,屬于基礎(chǔ)題. 2.以解答題的形式考查,主要是對線線、線面與面面平行和垂直關(guān)系的交匯綜合命題,且多以棱柱、棱錐、棱臺或其簡單組合體為載體進(jìn)行考查,難度中檔.,,,熱點(diǎn)分類突破,真題押題精練,內(nèi)容索引,熱點(diǎn)分類突破,空間線面位置關(guān)系判斷的常用方法 (1)根據(jù)空間線面平行、垂直關(guān)系的判定定理和性質(zhì)定理逐項(xiàng)判斷來解決問題. (2)必要時(shí)可以借助空間幾何模型,如從長方體、四面體等模型中觀察線
2、面位置關(guān)系,并結(jié)合有關(guān)定理來進(jìn)行判斷.,,熱點(diǎn)一空間線面位置關(guān)系的判定,例1(1)已知直線l,m與平面,,l,m,則下列命題中正確的是 A.若lm,則必有B.若lm,則必有 C.若l,則必有D.若,則必有m,解析,答案,解析對于選項(xiàng)A,平面和平面還有可能相交,所以選項(xiàng)A錯(cuò)誤; 對于選項(xiàng)B,平面和平面還有可能相交且不垂直或平行,所以選項(xiàng)B錯(cuò)誤; 對于選項(xiàng)C,因?yàn)閘,l,所以,所以選項(xiàng)C正確; 對于選項(xiàng)D,直線m可能和平面平行或相交,所以選項(xiàng)D錯(cuò)誤.,,解答,(2)如圖,平面平面,l,A,C是內(nèi)不同的兩點(diǎn),B,D是內(nèi)不同的兩點(diǎn),且A,B,C,D直線l,M,N分別是線段AB,CD的中點(diǎn).下列判斷正確
3、的是 A.當(dāng)CD2AB時(shí),M,N兩點(diǎn)不可能重合 B.M,N兩點(diǎn)可能重合,但此時(shí)直線AC與 l不可能相交 C.當(dāng)AB與CD相交,直線AC平行于l時(shí),直線BD可以與l相交 D.當(dāng)AB,CD是異面直線時(shí),直線MN可能與l平行,解析,答案,,解析由于直線CD的兩個(gè)端點(diǎn)都可以動,所以M,N兩點(diǎn)可能重合, 此時(shí)兩條直線AB,CD共面,由于兩條線段互相平分, 所以四邊形ACBD是平行四邊形, 因此ACBD,而BD,ACB, 所以由線面平行的判定定理可得AC, 又因?yàn)锳C,l, 所以由線面平行的性質(zhì)定理可得ACl,故選B.,,解決空間點(diǎn)、線、面位置關(guān)系的組合判斷題,主要是根據(jù)平面的基本性質(zhì)、空間位置關(guān)系的各
4、種情況,以及空間線面垂直、平行關(guān)系的判定定理和性質(zhì)定理進(jìn)行判斷,必要時(shí)可以利用正方體、長方體、棱錐等幾何模型輔助判斷,同時(shí)要注意平面幾何中的結(jié)論不能完全引用到立體幾何中.,,跟蹤演練1(1)(2018揭陽模擬)已知直線a,b,平面,,,下列命題正確的是 A.若,,a,則a B.若a,b,c,則abc C.若a,ba,則b D.若,a,b,則ba,解析,答案,,解析A中,若,,a,則a,該說法正確; B中,若a,b,c, 在三棱錐PABC中,令平面,,分別為平面PAB,PAC,PBC, 交線a,b,c為PA,PB,PC,不滿足abc,該說法錯(cuò)誤; C中,若a,ba,有可能b,不滿足b,該說法錯(cuò)誤
5、; D中,若,a,b, 正方體ABCDA1B1C1D1中,取平面,為平面ABCD,ADD1A1, 直線b為A1C1,滿足b,不滿足ba,該說法錯(cuò)誤.,解析,答案,(2)(2018上海市長寧、嘉定區(qū)調(diào)研)若直線l1和l2是異面直線,l1在平面內(nèi),l2在平面內(nèi),l是平面與平面的交線,則下列命題正確的是 A.l與l1,l2都相交 B.l與l1,l2都不相交 C.l至少與l1,l2中的一條相交 D.l至多與l1,l2中的一條相交,,解析方法一如圖1,l1與l2是異面直線,l1與l平行,l2與l相交,故A,B不正確; 如圖2,l1與l2是異面直線,l1,l2都與l相交, 故D不正確,故選C. 方法二因?yàn)?/p>
6、l分別與l1,l2共面,故l與l1,l2要么都不相交,要么至少與l1,l2中的一條相交. 若l與l1,l2都不相交,則ll1,ll2,從而l1l2,與l1,l2是異面直線矛盾,故l至少與l1,l2中的一條相交,故選C.,,熱點(diǎn)二空間平行、垂直關(guān)系的證明,空間平行、垂直關(guān)系證明的主要思想是轉(zhuǎn)化,即通過判定定理、性質(zhì)定理將線線、線面、面面之間的平行、垂直關(guān)系相互轉(zhuǎn)化.,例2(1)(2018資陽模擬)如圖,三棱柱ABCA1B1C1的各棱長均為2,AA1平面ABC,E,F(xiàn)分別為棱A1B1,BC的中點(diǎn). 求證:直線BE平面A1FC1;,證明,證明取A1C1的中點(diǎn)G,連接EG,F(xiàn)G, 點(diǎn)E為A1B1的中點(diǎn)
7、, EGB1C1,F為BC中點(diǎn),,所以BFEG且BFEG. 所以四邊形BFGE是平行四邊形,所以BEFG, 又BE平面A1FC1,F(xiàn)G平面A1FC1, 所以直線BE平面A1FC1.,平面A1FC1與直線AB交于點(diǎn)M,指出點(diǎn)M的位置,說明理由,并求三棱錐BEFM的體積.,解答,解M為棱AB的中點(diǎn). 理由如下: 因?yàn)锳CA1C1,AC平面A1FC1,A1C1平面A1FC1, 所以直線AC平面A1FC1, 又平面A1FC1平面ABCFM, 所以ACFM. 又F為棱BC的中點(diǎn), 所以M為棱AB的中點(diǎn).,(2)(2018衡水調(diào)研)如圖,在四棱錐PABCD中,底面ABCD是邊長為a的菱形,PD平面ABCD
8、,BAD60,PD2a,O為AC與BD的交點(diǎn),E為棱PB上一點(diǎn).,證明,證明:平面EAC平面PBD;,證明因?yàn)镻D平面ABCD,AC平面ABCD, 所以PDAC. 又四邊形ABCD為菱形,所以ACBD, 又PDBDD,PD,BD平面PBD, 所以AC平面PBD. 又AC平面EAC, 所以平面EAC平面PBD.,若PD平面EAC,三棱錐PEAD的體積為18 ,求a的值.,解答,解連接OE. 因?yàn)镻D平面EAC,平面EAC平面PBDOE, 所以PDOE. 又ACBDO, 所以O(shè)是BD的中點(diǎn),所以E是PB的中點(diǎn). 因?yàn)樗倪呅蜛BCD是菱形,且BAD60, 所以取AD的中點(diǎn)H,連接BH, 可知BHAD
9、, 又因?yàn)镻D平面ABCD,BH平面ABCD, 所以PDBH.,又PDADD,PD,AD平面PAD, 所以BH平面PAD.,解得a6.,垂直、平行關(guān)系的基礎(chǔ)是線線垂直和線線平行,常用方法如下: (1)證明線線平行常用的方法:一是利用平行公理,即證兩直線同時(shí)和第三條直線平行;二是利用平行四邊形進(jìn)行平行轉(zhuǎn)換;三是利用三角形的中位線定理證明線線平行;四是利用線面平行、面面平行的性質(zhì)定理進(jìn)行平行轉(zhuǎn)換. (2)證明線線垂直常用的方法:利用等腰三角形底邊中線即高線的性質(zhì);勾股定理;線面垂直的性質(zhì),即要證線線垂直,只需證明一條直線垂直于另一條直線所在的平面即可,l,ala.,,跟蹤演練2如圖,在四棱錐PAB
10、CD中,ADB90,CBCD,點(diǎn)E為棱PB的中點(diǎn). (1)若PBPD,求證:PCBD;,證明,證明取BD的中點(diǎn)O,連接CO,PO, 因?yàn)镃DCB, 所以CBD為等腰三角形, 所以BDCO. 因?yàn)镻BPD, 所以PBD為等腰三角形,所以BDPO. 又POCOO,PO,CO平面PCO, 所以BD平面PCO. 因?yàn)镻C平面PCO,所以PCBD.,(2)求證:CE平面PAD.,證明,證明由E為PB的中點(diǎn),連接EO,則EOPD, 又EO平面PAD,PD平面PAD, 所以EO平面PAD. 由ADB90及BDCO,可得COAD, 又CO平面PAD,AD平面PAD, 所以CO平面PAD. 又COEOO,CO,
11、EO平面COE, 所以平面CEO平面PAD, 而CE平面CEO,所以CE平面PAD.,,平面圖形經(jīng)過翻折成為空間圖形后,原有的性質(zhì)有的發(fā)生變化,有的沒有發(fā)生變化,這些發(fā)生變化和沒有發(fā)生變化的性質(zhì)是解決問題的關(guān)鍵.一般地,在翻折后還在一個(gè)平面上的性質(zhì)不發(fā)生變化,不在同一個(gè)平面上的性質(zhì)發(fā)生變化,解決這類問題就是要根據(jù)這些變與不變,去研究翻折以后的空間圖形中的線面關(guān)系和各類幾何量的度量值,這是解決翻折問題的主要方法.,熱點(diǎn)三平面圖形的翻折問題,例3(2018北京海淀區(qū)期末)如圖1,已知菱形AECD的對角線AC,DE交于點(diǎn)F,點(diǎn)E為AB中點(diǎn).將ADE沿線,證明折疊前,因?yàn)樗倪呅蜛ECD為菱形, 所以A
12、CDE, 所以折疊后,DEPF,DECF, 又PFCFF,PF,CF平面PCF, 所以DE平面PCF.,證明,段DE折起到PDE的位置,如圖2所示. (1)求證:DE平面PCF;,證明,(2)求證:平面PBC平面PCF;,證明因?yàn)樗倪呅蜛ECD為菱形, 所以DCAE,DCAE. 又點(diǎn)E為AB的中點(diǎn), 所以DCEB,DCEB, 所以四邊形DEBC為平行四邊形, 所以CBDE. 又由(1)得,DE平面PCF, 所以CB平面PCF. 因?yàn)镃B平面PBC, 所以平面PBC平面PCF.,解答,(3)在線段PD,BC上是否分別存在點(diǎn)M,N,使得平面CFM平面PEN?若存在,請指出點(diǎn)M,N的位置,并證明;若
13、不存在,請說明理由.,解存在滿足條件的點(diǎn)M,N, 且M,N分別是PD和BC的中點(diǎn). 如圖,分別取PD和BC的中點(diǎn)M,N. 連接EN,PN,MF,CM. 因?yàn)樗倪呅蜠EBC為平行四邊形,,所以四邊形ENCF為平行四邊形, 所以FCEN.,在PDE中,M,F(xiàn)分別為PD,DE的中點(diǎn), 所以MFPE. 又EN,PE平面PEN,PEENE,MF,CF平面CFM,MFCFF, 所以平面CFM平面PEN.,(1)折疊問題中不變的數(shù)量和位置關(guān)系是解題的突破口. (2)存在探索性問題可先假設(shè)存在,然后在此前提下進(jìn)行邏輯推理,得出矛盾則否定假設(shè),否則給出肯定結(jié)論.,,跟蹤演練3(2018北京朝陽區(qū)模擬)如圖,在P
14、BE中,ABPE,D是AE的中點(diǎn),C是線段BE上的一點(diǎn),且AC ,AB APAE2,將PBA沿AB折起使得二面角PABE是直二面角.,證明,(1)求證:CD平面PAB;,又AB2,ABPE,,所以AC是RtABE的斜邊BE上的中線, 所以C是BE的中點(diǎn), 又因?yàn)镈是AE的中點(diǎn), 所以CD是RtABE的中位線,所以CDAB, 又因?yàn)镃D平面PAB,AB平面PAB, 所以CD平面PAB.,解答,(2)求三棱錐EPAC的體積.,解由(1)知,直線CD是RtABE的中位線,,因?yàn)槎娼荘ABE是直二面角,平面PAB平面EABAB,PA平面PAB,PAAB, 所以PA平面ABE, 又因?yàn)锳P2,,真題押
15、題精練,真題體驗(yàn),解析,1.(2017全國改編)如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不平行的是________.(填序號),(1),答案,解析對于(1),作如圖所示的輔助線,其中D為BC的中點(diǎn),則QDAB. QD平面MNQQ, QD與平面MNQ相交, 直線AB與平面MNQ相交; 對于(2),作如圖所示的輔助線, 則ABCD,CDMQ, ABMQ, 又AB平面MNQ,MQ平面MNQ, AB平面MNQ;,對于(3),作如圖所示的輔助線, 則ABCD,CDMQ, ABMQ, 又AB平面MNQ,MQ平面MNQ, AB平面
16、MNQ; 對于(4),作如圖所示的輔助線, 則ABCD,CDNQ, ABNQ,又AB平面MNQ,NQ平面MNQ, AB平面MNQ.,2.(2017江蘇)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EFAD. 求證:(1)EF平面ABC;,證明,證明在平面ABD內(nèi),因?yàn)锳BAD,EFAD, 所以ABEF.又EF平面ABC,AB平面ABC, 所以EF平面ABC.,(2)ADAC.,證明,證明因?yàn)槠矫鍭BD平面BCD, 平面ABD平面BCDBD,BC平面BCD,BCBD, 所以BC平面ABD. 因?yàn)锳D平面ABD,所以BCA
17、D. 又ABAD,BCABB,AB平面ABC, BC平面ABC,所以AD平面ABC. 又AC平面ABC,所以ADAC.,押題預(yù)測,解析,押題依據(jù),押題依據(jù)空間兩條直線、兩個(gè)平面之間的平行與垂直的判定是立體幾何的重點(diǎn)內(nèi)容,也是高考命題的熱點(diǎn).此類題常與命題的真假性、充分條件和必要條件等知識相交匯,意在考查考生的空間想象能力、邏輯推理能力.,1.不重合的兩條直線m,n分別在不重合的兩個(gè)平面,內(nèi),下列為真命題的是 A.mnm B.mn C.m D.mn,答案,,解析構(gòu)造長方體,如圖所示. 因?yàn)锳1C1AA1,A1C1平面AA1C1C, AA1平面AA1B1B, 但A1C1與平面AA1B1B不垂直,
18、平面AA1C1C與平面AA1B1B也不垂直, 所以選項(xiàng)A,B都是假命題. CC1AA1,但平面AA1C1C與平面AA1B1B相交而不平行,所以選項(xiàng)D為假命題. “若兩平面平行,則一個(gè)平面內(nèi)任何一條直線必平行于另一個(gè)平面”是真命題,故選C.,押題依據(jù)以平面圖形的翻折為背景,探索空間直線與平面位置關(guān)系,可以考查考生的空間想象能力和邏輯推理能力,預(yù)計(jì)將成為今年高考的命題方向.,證明,押題依據(jù),2.如圖(1),在正ABC中,E,F(xiàn)分別是AB,AC邊上的點(diǎn),且BEAF2CF.點(diǎn)P為邊BC上的點(diǎn),將AEF沿EF折起到,A1EF的位置,使平面A1EF平面BEFC, 連接A1B,A1P,EP,如圖(2)所示.
19、 (1)求證:A1EFP;,證明在正ABC中,取BE的中點(diǎn)D,連接DF,如圖所示. 因?yàn)锽EAF2CF, 所以AFAD,AEDE,而A60, 所以ADF為正三角形.又AEDE,所以EFAD. 所以在題圖(2)中,A1EEF, 又A1E平面A1EF,平面A1EF平面BEFC, 且平面A1EF平面BEFCEF, 所以A1E平面BEFC. 因?yàn)镕P平面BEFC,所以A1EFP.,解答,(2)若BPBE,點(diǎn)K為棱A1F的中點(diǎn),則在平面A1FP上是否存在過點(diǎn)K的直線與平面A1BE平行,若存在,請給予證明;若不存在,請說明理由.,解在平面A1FP上存在過點(diǎn)K的直線與平面A1BE平行. 理由如下: 如題圖(1),在正ABC中,因?yàn)锽PBE,BEAF, 所以BPAF,所以FPAB,所以FPBE. 如圖所示,取A1P的中點(diǎn)M,連接MK, 因?yàn)辄c(diǎn)K為棱A1F的中點(diǎn), 所以MKFP. 因?yàn)镕PBE,所以MKBE.,因?yàn)镸K平面A1BE,BE平面A1BE, 所以MK平面A1BE. 故在平面A1FP上存在過點(diǎn)K的直線MK與平面A1BE平行.,
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會全文PPT
- 2025年寒假安全教育班會全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會議精神(使社會信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功