高中數(shù)學(xué) 1.3.1第2課時 函數(shù)的最大(小)值課件 新人教A版必修1.ppt

上傳人:tia****nde 文檔編號:14904313 上傳時間:2020-08-01 格式:PPT 頁數(shù):38 大?。?56KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 1.3.1第2課時 函數(shù)的最大(小)值課件 新人教A版必修1.ppt_第1頁
第1頁 / 共38頁
高中數(shù)學(xué) 1.3.1第2課時 函數(shù)的最大(?。┲嫡n件 新人教A版必修1.ppt_第2頁
第2頁 / 共38頁
高中數(shù)學(xué) 1.3.1第2課時 函數(shù)的最大(小)值課件 新人教A版必修1.ppt_第3頁
第3頁 / 共38頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 1.3.1第2課時 函數(shù)的最大(?。┲嫡n件 新人教A版必修1.ppt》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 1.3.1第2課時 函數(shù)的最大(?。┲嫡n件 新人教A版必修1.ppt(38頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、,,,,,,,,,,,第一章集合與函數(shù)概念,第2課時函數(shù)的最大(小)值,1理解函數(shù)的最大(小)值的概念及其幾何意義(重點) 2會求一些簡單函數(shù)的最大值或最小值(重點、難點),函數(shù)的最大值、最小值,f(x)M,f(x)M,f(x0)M,f(x0)M,1想一想 從函數(shù)圖象上看,函數(shù)最大值(最小值)在什么位置取得? 提示:從函數(shù)圖象上看,函數(shù)的最大值(最小值)應(yīng)在圖象的最高點(最低點)取得,2做一做 如圖為函數(shù)yf(x),x4,7的圖象,指出它的最大值、最小值,,解:觀察函數(shù)圖象可知,圖象上位置最高的點是(3,3),最低的點是(1.5,2), 所以函數(shù)yf(x)當x3時取得最大值,最大值是3,當x1

2、.5時取得最小值,最小值是2.,最大值、最小值定義的理解 (1)最大(小)值定義中具備的兩個條件 a對于定義域I內(nèi)的全部元素,都有f(x)M(f(x)M)成立;b.M首先是一個函數(shù)值,是值域中的一個元素,如f(x)x2的最大值是0,有f(0)0,注意定義中“存在”一詞的理解 (2)兩條件缺一不可,若只有前者,M不是最大(小)值,如f(x)x21成立,但1不是最大值,更不能只有后者,那樣就丟掉了最大值的核心了,圖象法求函數(shù)最值,試畫出f(x)x|x1|的圖象,并說明最值情況,1利用函數(shù)圖象求函數(shù)最值是求函數(shù)最值的常用方法這種方法以函數(shù)最值的幾何意義為依據(jù),對圖象易作出的函數(shù)求最值較常用 2圖象法

3、求最值的一般步驟是:,,,單調(diào)性法求最值,1運用函數(shù)單調(diào)性求最值是求函數(shù)最值的常用方法,特別是當函數(shù)圖象不易作出時,單調(diào)性幾乎成為首選方法 2函數(shù)最值與單調(diào)性有如下關(guān)系: (1)如果函數(shù)yf(x)在區(qū)間(a,b上是增函數(shù),在區(qū)間b,c)上是減函數(shù),那么函數(shù)yf(x),(x(a,c))在 xb處有最大值f(b);,(2)如果函數(shù)yf(x)在區(qū)間(a,b上是減函數(shù),在區(qū)間b,c)上是增函數(shù),那么函數(shù)yf(x),(x(a,c))在xb處有最小值f(b); (3)如果函數(shù)yf(x)在區(qū)間a,b上是增(減)函數(shù),則在區(qū)間a,b的左、右端點處分別取得最小(大)值和最大(小)值,建造一個容積為6 400立方

4、米,深為4米的長方體無蓋蓄水池,池壁的造價為每平方米200元,池底的造價為每平方米100元 (1)把總造價y元表示為池底的一邊長x米的函數(shù); (2)由于場地原因,蓄水池的一邊長不能超過40米,問蓄水池的這個底邊長為多少時總造價最低?總造價最低是多少?,函數(shù)最值的實際應(yīng)用,【互動探究】 本例(2)中,“不能超過40米”改為“不能低于50米且不能超過60米”,結(jié)果如何?,解實際應(yīng)用題的四個步驟 (1)審題:解讀實際問題,找出已知條件、未知條件,確定自變量和因變量的條件關(guān)系 (2)建模:建立數(shù)學(xué)模型,列出函數(shù)關(guān)系式 (3)求解:分析函數(shù)性質(zhì),利用數(shù)學(xué)知識探究問題解法(一定注意自變量的取值范圍) (4

5、)回歸:數(shù)學(xué)問題回歸實際問題,寫出答案,3某市一家報刊攤點,從該市報社買進該市的晚報價格是每份0.40元,賣出價格是每份0.60元,賣不掉的報紙以每份0.05元的價格退回報社在一個月(按30天計算)里,有18天每天可賣出400份,其余12天每天只能賣出180份則攤主每天從報社買進多少份晚報,才能使每月獲得的利潤最大?(設(shè)攤主每天從報社買進晚報的份數(shù)是相同的),解:設(shè)每天從報社買進x(180 x400,xN)份晚報,每月獲利為y元, 則有y0.20(18x12180)0.3512(x180) 0.6x1 188, 180 x400,xN. 因為函數(shù)y0.6x1 188在180 x400,xN上是

6、減函數(shù),所以x180時函數(shù)取得最大值,最大值為y0.61801 1881 080. 即攤主每天從報社買進180份晚報時,每月獲得的利潤最大,為1 080元,思維創(chuàng)新系列(三)二次函數(shù)的最值問題 求二次函數(shù)f(x)x22ax2在2,4上的最大值和最小值,,【借題發(fā)揮】1. 對于二次函數(shù)的最值問題,要結(jié)合函數(shù)圖象拋物線,對其對稱軸和所給區(qū)間的位置關(guān)系作出判斷,不確定時可分類討論如本例由于對稱軸xa,而a的取值不定,從而分四種情況討論 2拋物線開口方向、對稱軸位置與所給區(qū)間三者之間相互制約,要特別注意一般地,對于二次函數(shù)f(x)a(xh)2k(a0)在區(qū)間m,n上的最值情況可總結(jié)如下:,【多維探究】對于二次函數(shù)的最值問題,除了上面的動軸定區(qū)間問題以外,還有以下兩類情況 (1)定軸動區(qū)間問題 例:已知函數(shù)f(x)x22x3,若xt,t2時,求函數(shù)f(x)的最值,(2)已知二次函數(shù)的最大(小)值,求參數(shù) 例:已知函數(shù)f(x)x22ax(0 x1),且ymaxa2,求實數(shù)a的取值范圍 解:f(x)(xa)2a2(0 x1), 函數(shù)f(x)的圖象是開口向下的拋物線,且對稱軸為xa. 又ymaxa2,且0 x1,0a1, 1a0, 即實數(shù)a的取值范圍是1,0,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!