《江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專(zhuān)題升級(jí)訓(xùn)練4 函數(shù)圖象與性質(zhì) 文》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專(zhuān)題升級(jí)訓(xùn)練4 函數(shù)圖象與性質(zhì) 文(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專(zhuān)題升級(jí)訓(xùn)練4 函數(shù)圖象與性質(zhì)
(時(shí)間:60分鐘 滿(mǎn)分:100分)
一、選擇題(本大題共6小題,每小題6分,共36分)
1.若f(x)=,則f(x)的定義域?yàn)? ).
A. B.
C. D.(0,+∞)
2.設(shè)函數(shù)f(x)(x∈R)滿(mǎn)足f(-x)=f(x),f(x+2)=f(x),則y=f(x)的圖象可能是( ).
3.(2012·江西六校聯(lián)考,文10)若函數(shù)f(x)的圖象經(jīng)過(guò)變換T后所得圖象對(duì)應(yīng)函數(shù)的值域與函數(shù)f(x)的值域相同,則稱(chēng)變換T是函數(shù)f(x)的同值變換.下面給出四個(gè)函數(shù)及其對(duì)應(yīng)的變換T,其中變換T不屬于函數(shù)f(x)的同值變換的是(
2、 ).
A.f(x)=(x-1)2,變換T將函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱(chēng)
B.f(x)=2x-1-1,變換T將函數(shù)f(x)的圖象關(guān)于x軸對(duì)稱(chēng)
C.f(x)=2x+3,變換T將函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱(chēng)
D.f(x)=sin,變換T將函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱(chēng)
4.已知函數(shù)f(x)=ln(x+),若實(shí)數(shù)a,b滿(mǎn)足f(a)+f(b-1)=0,則a+b等于( ).
A.-1 B.0
C.1 D.不確定
5.記max{a,b}=若x,y滿(mǎn)足則z=max{y+x,y-x}的取值范圍是( ).
A.[-1,1] B.[-
3、1,2]
C.[0,2] D.[-2,2]
6.設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個(gè)不同的零點(diǎn),則稱(chēng)f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱(chēng)為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍為( ).
A. B.[-1,0]
C.(-∞,-2] D.
二、填空題(本大題共3小題,每小題6分,共18分)
7.設(shè)函數(shù)f(x)=若f(x)=1,則x=__________.
8.若函數(shù)f(x
4、)=ax2+x+1的值域?yàn)镽,則函數(shù)g(x)=x2+ax+1的值域?yàn)開(kāi)_________.
9.已知函數(shù)f(x)=ln x+2x,若f(x2+2)<f(3x),則實(shí)數(shù)x的取值范圍是__________.
三、解答題(本大題共3小題,共46分.解答應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟)
10.(本小題滿(mǎn)分15分)已知二次函數(shù)f(x)滿(mǎn)足條件f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.
11.(本小題滿(mǎn)分15分)已知函數(shù)f(x)=ax2-2ax+2+b(a≠0)在區(qū)間[2,3]上有最大值5,最小值2.
(
5、1)求a,b的值;
(2)若b<1,g(x)=f(x)-2mx在[2,4]上單調(diào),求m的取值范圍.
12.(本小題滿(mǎn)分16分)定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0]時(shí),f(x)=-(a∈R).
(1)求f(x)在[0,1]上的最大值;
(2)若f(x)是[0,1]上的增函數(shù),求實(shí)數(shù)a的取值范圍.
參考答案
一、選擇題
1.A 解析:根據(jù)題意得,即0<2x+1<1,解得x∈.
2.B 解析:由f(-x)=f(x)可知函數(shù)為偶函數(shù),其圖象關(guān)于y軸對(duì)稱(chēng),可以結(jié)合選項(xiàng)排除A、C,再利用f(x+2)=f(x),可知函數(shù)為周期函數(shù),且T=2,必滿(mǎn)足f(4)=f(2
6、),排除D,故只能選B.
3.B 解析:對(duì)于A(yíng),與f(x)=(x-1)2的圖象關(guān)于y軸對(duì)稱(chēng)的圖象對(duì)應(yīng)的函數(shù)為g(x)=(-x-1)2=(x+1)2,易知兩者的值域都為[0,+∞);對(duì)于B,函數(shù)f(x)=2x-1-1的值域?yàn)?-1,+∞),與函數(shù)f(x)的圖象關(guān)于x軸對(duì)稱(chēng)的圖象對(duì)應(yīng)的函數(shù)為g(x)=-2x-1+1,其值域?yàn)?-∞,1);對(duì)于C,與f(x)=2x+3的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱(chēng)的圖象對(duì)應(yīng)的函數(shù)為2-g(x)=2(-2-x)+3,即g(x)=2x+3,易知值域相同;對(duì)于D,與f(x)=sin的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱(chēng)的圖象對(duì)應(yīng)的函數(shù)為g(x)=sin,其值域?yàn)閇-1,1],易知兩
7、函數(shù)的值域相同.
4.C 解析:觀(guān)察得f(x)在定義域內(nèi)是增函數(shù),而f(-x)=ln(-x+)=ln=-f(x),
∴f(x)是奇函數(shù).
又f(a)=-f(b-1)=f(1-b).
∴a=1-b,即a+b=1.故選C.
5.B 解析:當(dāng)y+x≥y-x,即x≥0時(shí),z=max{y+x,y-x}=y(tǒng)+x;
當(dāng)y+x<y-x,即x<0時(shí),z=max{y+x,y-x}=y(tǒng)-x.
∴z=max{y-x,y+x}=
∴z的取值范圍為[-1,2].
6.A 解析:∵y=f(x)-g(x)=x2-3x+4-2x-m=x2-5x+4-m在[0,3]上有兩個(gè)不同的零點(diǎn),
∴∴-<m≤-2.
8、二、填空題
7.-2 解析:當(dāng)x≤1時(shí),由|x|-1=1,得x=±2,故可得x=-2;當(dāng)x>1時(shí),由2-2x=1,得x=0,不適合題意.故x=-2.
8.[1,+∞) 解析:要使f(x)的值域?yàn)镽,必有a=0,于是g(x)=x2+1,值域?yàn)閇1,+∞).
9.(1,2) 解析:函數(shù)f(x)=ln x+2x在區(qū)間(0,+∞)上是增函數(shù),
由f(x2+2)<f(3x),得解得1<x<2.
三、解答題
10.解:(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),
∵f(0)=1,∴c=1.
∵f(x+1)-f(x)=2x,
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=
9、2x,即2ax+a+b=2x.
∴∴∴f(x)=x2-x+1.
(2)f(x)=x2-x+1,f(x)min=f=,f(x)max=f(-1)=3.
11.解:(1)f(x)=a(x-1)2+2+b-a.
①當(dāng)a>0時(shí),f(x)在[2,3]上為增函數(shù),
故??
②當(dāng)a<0時(shí),f(x)在[2,3]上為減函數(shù),
故??
(2)∵b<1,∴a=1,b=0,
即f(x)=x2-2x+2,g(x)=x2-2x+2-2m·x=x2-(2+2m)x+2.
若g(x)在[2,4]上單調(diào),則≤2或≥4,
∴2m≤2或2m≥6,即m≤1或m≥log26.
12.解:(1)設(shè)x∈[0,1],
10、則-x∈[-1,0],f(-x)=-=4x-a·2x.
∵f(-x)=-f(x),∴f(x)=a·2x-4x,x∈[0,1].
令t=2x,t∈[1,2],
∴g(t)=a·t-t2=-2+.
當(dāng)≤1,即a≤2時(shí),g(t)max=g(1)=a-1;
當(dāng)1<<2,即2<a<4時(shí),g(t)max=g=;
當(dāng)≥2,即a≥4時(shí),g(t)max=g(2)=2a-4.
綜上,當(dāng)a≤2時(shí),f(x)的最大值為a-1;
當(dāng)2<a<4時(shí),f(x)的最大值為;
當(dāng)a≥4時(shí),f(x)的最大值為2a-4.
(2)∵函數(shù)f(x)在[0,1]上是增函數(shù),
∴f′(x)=aln 2·2x-ln 4·4x=2xln 2(a-2·2x)≥0,
∴a-2·2x≥0,a≥2·2x恒成立,
∵2x∈[1,2],∴a≥4.