2013年全國高考數(shù)學第二輪復(fù)習 專題六 解析幾何第1講 直線與圓 文
《2013年全國高考數(shù)學第二輪復(fù)習 專題六 解析幾何第1講 直線與圓 文》由會員分享,可在線閱讀,更多相關(guān)《2013年全國高考數(shù)學第二輪復(fù)習 專題六 解析幾何第1講 直線與圓 文(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題六 解析幾何第1講 直線與圓 真題試做 1.(2012·安徽高考,文9)若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a的取值范圍是( ). A.[-3,-1] B.[-1,3] C.[-3,1] D.(-∞,-3]∪[1,+∞) 2.(2012·山東高考,文9)圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為( ). A.內(nèi)切 B.相交 C.外切 D.相離 3.(2012·福建高考,文7)直線x+y-2=0與圓x2+y2=4相交于A,B兩點,則弦AB的長度等于( ).
2、A.2 B.2 C. D.1 4.(2012·北京高考,文9)直線y=x被圓x2+(y-2)2=4截得的弦長為__________. 5.(2012·天津高考,文12)設(shè)m,n∈R,若直線l:mx+ny-1=0與x軸相交于點A,與y軸相交于點B,且l與圓x2+y2=4相交所得弦的長為2,O為坐標原點,則△AOB面積的最小值為__________. 6.(2012·江蘇高考,12)在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是__________.
3、 考向分析 直線與方程是解析幾何的基礎(chǔ),高考中主要考查基本概念和求在不同條件下的直線方程;直線平行與垂直的關(guān)系的判定;兩條直線的交點和距離問題等,一般以選擇題、填空題的形式考查.對于圓的考查,主要是結(jié)合直線的方程用幾何法或待定系數(shù)法確定圓的標準方程及一般方程;利用圓的性質(zhì)求動點的軌跡方程;直線與圓,圓與圓的位置關(guān)系等問題,其中含參數(shù)問題為命題熱點.一般以選擇題、填空題的形式考查,難度不大,從能力要求看,主要考查函數(shù)與方程的思想,數(shù)形結(jié)合思想以及分析問題與解決問題的能力. 熱點例析 熱點一 直線方程與兩條直線的位置關(guān)系 【例1】經(jīng)過點P(2,-3)作圓(x+1)2+y2=25的弦A
4、B,使點P為弦AB的中點,求弦AB所在直線方程. 規(guī)律方法 (1)求直線方程的方法 ①直接法:直接選用恰當?shù)闹本€方程的形式,寫出結(jié)果; ②待定系數(shù)法:先由直線滿足的一個條件設(shè)出直線方程,使方程中含有一待定系數(shù),再由題目中另一條件求出待定系數(shù). (2)兩條直線平行與垂直的判定 ①若兩條不重合的直線l1,l2的斜率k1,k2存在,則l1∥l2?k1=k2,l1⊥l2?k1k2=-1; ②兩條不重合的直線a1x+b1y+c1=0和a2x+b2y+c2=0平行的充要條件為a1b2-a2b1=0且a1c2≠a2c1或b1c2≠b2c1; ③兩條直線a1x+b1y+c1=0和a2x+b2y+
5、c2=0垂直的充要條件為a1a2+b1b2=0.判定兩直線平行與垂直的關(guān)系時,如果給出的直線方程中存在字母系數(shù),不僅要考慮斜率存在的情況,還要考慮斜率不存在的情況. (3)忽視對直線方程中的字母分類討論而丟解或增解 直線方程的截距式+=1中,有ab≠0的限制,而截距可以取正數(shù)、負數(shù)和零,所以需要對a,b分類討論,否則容易造成丟解.如過點P(2,-1),在x軸,y軸上的截距分別為a,b,且滿足a=3b的直線易漏掉過原點的情形. 變式訓練1 (1)“a=3”是“直線ax-2y-1=0與直線6x-4y+c=0平行”的__________條件.( ) A.充要 B.
6、充分而不必要 C.必要而不充分 D.既不充分也不必要 (2)已知圓C過點(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長為2,則過圓心且與直線l垂直的直線的方程為__________. 熱點二 圓的方程 【例2】(2011·課標全國高考,文20)在平面直角坐標系xOy中,曲線y=x2-6x+1與坐標軸的交點都在圓C上. (1)求圓C的方程; (2)若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值. 規(guī)律方法 圓的方程的求法 求圓的方程一般有兩類方法:(1)幾何法,通過研究圓的性質(zhì)、直線和圓、圓與圓的位置關(guān)系,從而求得圓的基本量和
7、方程;(2)代數(shù)法,用待定系數(shù)法先設(shè)出圓的方程,再由條件求得各系數(shù),從而求得圓的方程一般采用待定系數(shù)法. 特別提醒:圓心到切線的距離等于半徑,該結(jié)論在解題過程中經(jīng)常用到,需牢記. 變式訓練2 (1)已知圓C經(jīng)過點A(1,3),B(2,2),并且直線m:3x-2y=0平分圓的面積,則圓C的方程為__________. (2)我們把圓心在一條直線上且相鄰兩圓彼此外切的一組圓叫做“串圓”.在如圖所示的“串圓”中,圓C1和圓C3的方程分別為x2+y2=1和(x-3)2+(y-4)2=1,則圓C2的方程為_____________________. 熱點三 直線與圓的位置關(guān)系 【例3】如圖
8、所示,已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點,直線l與l1相交于點P. (1)求圓A的方程; (2)當|MN|=2時,求直線l的方程; (3)·是否為定值?如果是,求出其定值;如果不是,請說明理由. 規(guī)律方法 (1)研究直線與圓的位置關(guān)系最基本的解題方法為代數(shù)法,將幾何問題代數(shù)化,利用函數(shù)與方程思想解題. (2)與弦長有關(guān)的問題常用幾何法,即利用圓的半徑r,圓心到直線的距離d,及半弦長,構(gòu)成直角三角形的三邊,利用其關(guān)系來處理. 變式訓練3 已知直線l:2mx-y-8m-3=0和圓C:(
9、x-3)2+(y+6)2=25. (1)證明:不論m取什么實數(shù),直線l與圓C總相交; (2)求直線l被圓C截得的線段的最短長度以及此時直線l的方程. 思想滲透 1.數(shù)形結(jié)合思想 解答與圓有關(guān)的范圍問題時,經(jīng)常以形助數(shù),巧妙破解. 若直線y=x+b與曲線y=3-有公共點,則b的取值范圍是( ). A.[-1,1+2] B.[1-2,1+2] C.[1-2,3] D.[1-,3] 解析:方程y=x+b表示斜率為1的平行直線系,曲線方程可化為(x-2)2+(y-3)2=4(1≤y≤3)表示圓心為(2,3),半徑為2的下半圓. 如圖所示,當直線y=x+b
10、與半圓相切時須滿足圓心(2,3)到直線x-y+b=0的距離等于2,即=2,解得b=1-2或b=1+2(舍). 當直線y=x+b過點(0,3)時,可得b=3,由圖可知滿足題意的b的取值范圍為1-2≤b≤3. 答案:C 2.分類討論思想 遇到字母時往往要對其進行討論. 試判斷方程x2+y2+4x+2my+8=0表示的曲線類型. 解:將x2+y2+4x+2my+8=0配方,得(x+2)2+(y+m)2=m2-4. (1)當m2-4>0,即m<-2或m>2時,原方程表示以(-2,-m)為圓心,為半徑的圓; (2)當m2-4=0,即m=±2時,原方程表示點(-2,-2)或(-2,2);
11、 (3)當m2-4<0,即-2<m<2時,原方程不表示任何曲線. 1.“a=b”是“直線y=x+2與圓(x-a)2+(y-b)2=2相切”的( ). A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 2.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為( ). A.(x+1)2+(y-1)2=2 B.(x-1)2+(y+1)2=2 C.(x-1)2+(y-1)2=2 D.(x+1)2+(y+1)2=2 3.(2012·安徽安慶二模,5)已知圓C:x2+y2-2x+4y-4=0,直線l:2x+y=0
12、,則圓C上的點到直線l的距離最大值為( ). A.1 B.2 C.3 D.4 4.(2012·山東濰坊二模,14)若a,b,c是Rt△ABC的三邊的長(c為斜邊長),則圓C:x2+y2=4被直線l:ax+by+c=0所截得的弦長為__________. 5.(2012·吉林長春實驗中學二模,14)圓心在直線x-2y-1=0上,且經(jīng)過原點和點(2,1)的圓的方程為__________. 6.(2012·湖北武昌5月模擬,13)在圓x2+y2=4上的點,與直線l:4x+3y-12=0的距離的最小值是__________. 7.已知直線l過點P(0,2),斜
13、率為k,圓Q:x2+y2-12x+32=0. (1)若直線l和圓相切,求直線l的方程; (2)若直線l和圓交于A,B兩個不同的點,問是否存在常數(shù)k,使得+與共線?若存在,求出k的值;若不存在,請說明理由. 參考答案 命題調(diào)研·明晰考向 真題試做 1.C 解析:由題意可得,圓的圓心為(a,0),半徑為, ∴≤,即|a+1|≤2, 解得-3≤a≤1. 2.B 解析:圓O1:(x+2)2+y2=4的圓心為(-2,0),半徑r1=2, 圓O2:(x-2)2+(y-1)2=9的圓心為(2,1),半徑r2=3,|O1O2|==, 因為r2-r1<|O1O2|<r1+r2, 所以兩圓
14、相交. 3.B 解析:由題意作出圖象如下圖,由圖可知圓心到直線AB的距離d==1, 故|AB|=2|BC|=2=2. 4.2 解析:由題意得,圓x2+(y-2)2=4的圓心為(0,2),半徑為2,圓心到直線x-y=0的距離d==. 設(shè)截得的弦長為l,則由2+()2=22,得l=2. 5.3 解析:∵l與圓相交所得弦的長為2,∴=, ∴m2+n2=≥2|mn|,∴|mn|≤. l與x軸的交點為A,與y軸的交點為B, ∴S△AOB=·=·≥×6=3. 6. 解析:圓C的方程可化為(x-4)2+y2=1,直線y=kx-2是過定點(0,-2)的動直線.圓心C到直線y=kx-2的距
15、離d=,要使其滿足已知條件,則需d≤1+1, 即≤1+1,解得0≤k≤. 故k的最大值為. 精要例析·聚焦熱點 熱點例析 【例1】解:設(shè)圓心為C,則AB垂直于CP. kCP==-1,故直線AB的方程為y+3=x-2,即x-y-5=0. 【變式訓練1】(1)C 解析:兩條直線平行的充要條件是:=≠, 即故“a=3”是“直線ax-2y-1=0與直線6x-4y+c=0平行”的必要而不充分條件. (2)x+y-3=0 解析:設(shè)圓心坐標為(x0,0)(x0>0). 由于圓過點(1,0),則半徑r=|x0-1|,圓心到直線l的距離d=. 由弦長為2可知2=(x0-1)2-2, 整理
16、得(x0-1)2=4. ∴x0-1=±2,∴x0=3或x0=-1(舍去). 因此圓心為(3,0),由此可求得過圓心且與直線y=x-1垂直的直線方程為y=-(x-3),即x+y-3=0. 【例2】解:(1)曲線y=x2-6x+1與y軸的交點為(0,1),與x軸的交點為(3+2,0),(3-2,0). 故可設(shè)C的圓心為(3,t),則有32+(t-1)2=(2)2+t2, 解得t=1. 則圓C的半徑為=3. 所以圓C的方程為(x-3)2+(y-1)2=9. (2)設(shè)A(x1,y1),B(x2,y2),其坐標滿足方程組: 消去y,得到方程2x2+(2a-8)x+a2-2a+1=0
17、. 由已知可得,判別式Δ=56-16a-4a2>0. 因此x1,2=, 從而x1+x2=4-a,x1x2=.① 由于OA⊥OB,可得x1x2+y1y2=0. 又y1=x1+a,y2=x2+a,所以2x1x2+a(x1+x2)+a2=0.② 由①,②得a=-1,滿足Δ>0,故a=-1. 【變式訓練2】(1)(x-2)2+(y-3)2=1 解析:由已知得,線段AB的中點E, kAB==-1,故線段AB的中垂線方程為y-=x-, 即x-y+1=0. 因為圓C經(jīng)過A,B兩點,故圓心在線段AB的中垂線上. 又因為直線m:3x-2y=0平分圓的面積,所以直線m經(jīng)過圓心. 由解得即圓
18、心C(2,3). 而圓的半徑r=|CB|==1, 所以圓C的方程為(x-2)2+(y-3)2=1. (2)2+(y-2)2= 解析:易求出C1(0,0),半徑r1=1, 圓心C3(3,4),半徑r3=1. 設(shè)圓C2的圓心坐標為C2(a,b),半徑為r2,據(jù)題意得 即可解出故圓C2的方程為2+(y-2)2=. 【例3】解:(1)設(shè)圓A的半徑為R. ∵圓A與直線l1:x+2y+7=0相切,∴R==2. ∴圓A的方程為(x+1)2+(y-2)2=20. (2)當直線l與x軸垂直時,易知x=-2符合題意; 當直線l與x軸不垂直時,設(shè)直線l的方程為y=k(x+2), 即kx-y+
19、2k=0. 連接AQ,則AQ⊥MN. ∵|MN|=2,∴|AQ|==1. 由|AQ|==1,得k=, ∴直線l的方程為3x-4y+6=0, ∴所求直線l的方程為x=-2或3x-4y+6=0. (3)∵AQ⊥BP,∴·=0, ∴·=(+)· =·+·=·. 當直線l與x軸垂直時,得P, 則=. 又=(1,2),∴·=·=-5. 當直線l的斜率存在時,設(shè)直線l的方程為y=k(x+2). 由 解得P,∴=, ∴·=·=-=-5. 綜上所述,·是定值,且·=-5. 【變式訓練3】(方法一)(1)證明:設(shè)圓心C到直線l的距離為d,則有d=, 整理可得4(d2-1)m2
20、+12m+d2-9=0,① 為使上面關(guān)于m的方程有實數(shù)解, 則Δ=122-16(d2-1)(d2-9)≥0,解得0≤d≤. 可得d<5,故不論m為何實數(shù),直線l與圓C總相交. (2)解:由(1)可知0≤d≤,即d的最大值為. 根據(jù)平面幾何知識可知:當圓心到直線l的距離最大時,直線l被圓C截得的線段長度最短. ∴當d=時,線段(即弦)的最短長度為 2=2. 將d=代入①可得m=-,代入直線l的方程得直線被圓C截得最短線段時l的方程為x+3y+5=0. (方法二)(1)證明:將直線l的方程變形有:m(2x-8)-y-3=0, 解得知直線l過定點A(4,-3). 又∵(4-3)
21、2+(-3+6)2<25,∴A點在圓C內(nèi)部, 因此直線l與圓C總相交. (2)解:同方法一. 創(chuàng)新模擬·預(yù)測演練 1.A 解析:直線y=x+2與圓(x-a)2+(y-b)2=2相切?圓心(a,b)到直線y=x+2的距離d=r,即=,|a-b+2|=2.解得a-b=0或a-b=-4,故選A. 2.B 解析:由圓心在直線x+y=0上,不妨設(shè)為C(a,-a), ∴r==, 解得a=1,r=, ∴圓C的方程為(x-1)2+(y+1)2=2. 3.C 解析:可利用數(shù)形結(jié)合法進行分析解決. 4.2 5.2+2= 解析:設(shè)所求圓的方程為(x-a)2+(y-b)2=r2, 由題設(shè)可得解
22、此方程組,得 所以所求圓的方程為2+2=. 6. 解析:圓的半徑是2,圓心(0,0)到l:4x+3y-12=0的距離d==,所以圓x2+y2=4上的點與直線l:4x+3y-12=0的距離的最小值是-2=. 7.解:(1)將圓的方程化簡,得(x-6)2+y2=4. 圓心Q(6,0),半徑r=2. 直線l的方程為:y=kx+2, 故圓心到直線l的距離d==, 因為直線l和圓相切,故d=r,即=2, 解得k=0或k=-, 所以,直線l的方程為y=2或3x+4y-8=0. (2)將直線l的方程和圓的方程聯(lián)立得 消去y得(1+k2)x2+4(k-3)x+36=0, 因為直線l和圓相交,故Δ=[4(k-3)]2-4×36×(1+k2)>0, 解得-<k<0. 設(shè)A(x1,y1),B(x2,y2),則有 而y1+y2=kx1+2+kx2+2=k(x1+x2)+4, +=(x1+x2,y1+y2),=(6,-2). 因為+與共線, 所以-2×(x1+x2)=6×(y1+y2), 即(1+3k)(x1+x2)+12=0, 代入得(1+3k)+12=0,解得k=-. 又因為-<k<0,所以沒有符合條件的常數(shù)k.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復(fù)習題含答案
- 1 各種煤礦安全考試試題含答案