高考總復習數(shù)學(大綱版)提能拔高限時訓練:函數(shù)性質的綜合應用(練習 詳細答案)

上傳人:r****d 文檔編號:146709844 上傳時間:2022-08-31 格式:DOC 頁數(shù):8 大?。?16.50KB
收藏 版權申訴 舉報 下載
高考總復習數(shù)學(大綱版)提能拔高限時訓練:函數(shù)性質的綜合應用(練習 詳細答案)_第1頁
第1頁 / 共8頁
高考總復習數(shù)學(大綱版)提能拔高限時訓練:函數(shù)性質的綜合應用(練習 詳細答案)_第2頁
第2頁 / 共8頁
高考總復習數(shù)學(大綱版)提能拔高限時訓練:函數(shù)性質的綜合應用(練習 詳細答案)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考總復習數(shù)學(大綱版)提能拔高限時訓練:函數(shù)性質的綜合應用(練習 詳細答案)》由會員分享,可在線閱讀,更多相關《高考總復習數(shù)學(大綱版)提能拔高限時訓練:函數(shù)性質的綜合應用(練習 詳細答案)(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、提能拔高限時訓練15 函數(shù)性質的綜合應用 一、選擇題 1.設函數(shù)f(x)(x∈R)是奇函數(shù),,f(x+2)=f(x)+f(2),則f(5)等于( ) A.0 B.1 C. 解析:由已知f(-1)=-f(1)=,且f(1)=f(-1+2)=f(-1)+f(2), 所以f(2)=f(1)-f(-1)=1,f(3)=f(2)+f(1)=,f(5)=f(2)+f(3)=. 故選C. 答案:C 2.設函數(shù)f(x)是定義在R上的以3為周期的奇函數(shù),若f(1)>1,,則a的取值范圍是( ) A.

2、 B.且a≠1 C.或a<-1 D. 解析:,f(-1)=-f(1)<-1, ∴. 答案:D R上的函數(shù)f(x)不是常數(shù)函數(shù),且滿足f(x-1)=f(x+1),f(x+1)=f(1-x),則f(x)( ) 解析:f(x+1)=f(x-1),∴f(x+2)=f(x). ∴f(x)的最小正周期為2. 又f(1+x)=f(1-x), ∴f(x)的對稱軸為x=1. ∵f(-x)=f(-x-1+1)=f[1-(-x-1)]=f(x+2)=f(x), ∴f(x)是偶函數(shù).∴選B. 答案:B R上的周期函數(shù)f(x),其周期T=2

3、,直線x=2是它的圖象上的一條對稱軸,且f(x)在[-3,-2]上是減函數(shù),如果A、B是銳角三角形的兩個內角,則( ) A.f(sinA)>f(cosB) B.f(cosB)>f(sinA) C.f(sinA)>f(sinB) D.f(cosB)>f(cosA) 解析:∵f(x)的周期T=2,且f(x)在[-3,-2]上是減函數(shù), ∴f(x)在[-1,0]上是減函數(shù). ∵x=2是f(x)圖象的一條對稱軸,T=2, ∴f(x)的圖象關于y軸對稱. ∴f(x)在[0,1]上是增函數(shù). ∵A、B是銳角三角形的內角, ∴A+B>90°. ∴90°>A>

4、90°-B>0. ∴sinA>sin(90°-B)=cosB. ∴f(sinA)>f(cosB). 答案:A 5.下面四個結論:①偶函數(shù)的圖象一定與y軸相交;②奇函數(shù)的圖象一定通過原點;③偶函數(shù)的圖象關于y軸對稱;④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R).其中正確命題的個數(shù)是( ) A.1 B.2 C 解析:偶函數(shù)的圖象關于y軸對稱,但不一定與y軸相交,反例:y=x-2,y=x0等,∴①錯誤,③正確.奇函數(shù)的圖象關于原點對稱,但不一定經(jīng)過原點,反例:y=x-1,∴②錯誤.若y=f

5、(x)既是奇函數(shù)又是偶函數(shù),由定義可得f(x)=0,但未必x∈R.(只要定義域關于原點對稱就可以) 答案:A 6.若x∈R、n∈N*,定義:=x(x+1)(x+2)…(x+n-1),例如:=(-5)×(-4)×(-3)×(-2)×(-1)=-120,則函數(shù)的奇偶性為( ) 解析: =x(x-9)(x-8)…x…(x+8)[(x-9)+19-1]=x2(x2-92)…(x2-1). 答案:A 7.f(x)是定義在R上的以3為周期的奇函數(shù),且f(2)=0,在區(qū)間(0,6)內f(x)=0解的個數(shù)的最小值是( ) A.2 B.

6、3 C 解析:f(2)=f(5)=0,f(0)=f(3)=0,f(2)=f(-1)=-f(1)=0, ∴f(1)=f(4)=0.∴f(x)=0在(0,6)內至少有5個根,x=1,2,3,4,5. 答案:D 8.已知命題p:函數(shù)y=loga(ax+2a)(a>0,a≠1)的圖象必過定點(-1,1);命題q:若函數(shù)y=f(x-3)的圖象關于原點對稱,則函數(shù)f(x)關于點(3,0)對稱.那么( ) 解析:只需檢驗當x=-1時,y=logaa=1,知命題p為真;因y=f(x-3)向左平移3個單位得到y(tǒng)=f(x),故函數(shù)y=f(x)的圖象關于點(-

7、3,0)對稱,所以命題q為假,故選C. 答案:C 9.已知f(x)是定義在R上的且以2為周期的偶函數(shù),當0≤x≤1時,f(x)=x2,如果直線y=x+a與曲線y=f(x)恰有兩個交點,則實數(shù)a的值是( ) A.0 B.2k(k∈Z) (k∈Z(k∈Z) 解析:用數(shù)形結合法.由題意可作出函數(shù)的大致圖象(如圖),滿足條件的直線有L1和L2兩類,L1這種情況的a=0,L2這種情況的.又函數(shù)的周期為2,故所求a的值為2k或(k∈Z). 答案:C 10.給出定義:若<x≤(其

8、中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.函數(shù)f(x)=|x-{x}|(x∈R).對于函數(shù)f(x),現(xiàn)給出如下判斷: ①函數(shù)y=f(x)是偶函數(shù); ②函數(shù)y=f(x)是周期函數(shù); ③函數(shù)y=f(x)在區(qū)間(,]上單調遞增; ④函數(shù)y=f(x)的圖象關于直線(k∈Z)對稱. 則判斷正確的結論的個數(shù)是( ) A.1 B.2 C 解析:對①:當x∈(,),m∈Z時,-x∈(,), ∴{x}=m,{-x}=-m. ∴f(-x)=|-x-{-x}|=|-x+m|=

9、|x-m|=|x-{x}|=f(x); 當,m∈Z時,f(x)=f(-x)=, 故函數(shù)y=f(x)是偶函數(shù). 對②:對任意x∈(,],x+1∈(,],∴{x+1}=m+1. ∴f(x+1)=|x+1-{x+1}|=|x+1-m-1|=|x-m|=|x-{x}|=f(x). 故函數(shù)y=f(x)是以1為周期的周期函數(shù). 對③:∵, f(0)=|0-0|=0,∴③錯誤. 對④:∵函數(shù)y=f(x)是偶函數(shù),即f(-x)=f(x), 又函數(shù)y=f(x)是以1為周期的周期函數(shù), 即f(x+1)=f(x), ∴f(x+1)=f(-x). 故函數(shù)y=f(x)的圖象關于直線(k∈Z)對稱

10、. 答案:C 二、填空題 11.已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x2-2x+1,則f(x)的表達式為_________. 解析:∵f(x)是奇函數(shù), ∴f(-0)=-f(0).∴f(0)=0. 當x<0時,-x>0,則f(-x)=x2+2x+1. ∵f(-x)=-f(x), ∴f(x)=-x2-2x-1. ∴ 答案: 12.函數(shù)f(x)對于任意實數(shù)x滿足條件,若f(1)=-5,則f[f(5)]=__________. 解析:由得,所以f(5)=f(1)=-5,則f[f(5)]=f(-5)=f(-1)=. 答案: 13.已知函數(shù)y=f(x)是

11、奇函數(shù),當x≥0時,f(x)=3x-1,設f(x)的反函數(shù)是y=g(x),則g(-8)=______. 解析:當x<0時,-x>0,f(-x)=3-x-1. 又∵f(x)是奇函數(shù),∴f(-x)=-f(x), 即-f(x)=3-x-1. ∴f(x)=1-3-x. ∴ ∴ ∴f-1(-8)=g(-8)=-log3(1+8)=-log332=-2. 答案:-2 14.設f(x)是定義在R上的奇函數(shù),且y=f(x)的圖象關于直線對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=__________. 解析:∵y=f(x)圖象關于直線對稱, ∴有f(x)=f(1-x).

12、又f(x)是定義在R上的奇函數(shù), ∴f(1)=f(0)=0, f(2)=f(-1)=-f(1)=0. 同理f(3)=f(4)=f(5)=0. 答案:0 三、解答題 15.已知y=f(x)滿足f(-x)=-f(x),它在(0,+∞)上是增函數(shù),且f(x)<0,試問在(-∞,0)上是增函數(shù)還是減函數(shù)?證明你的結論. 解:F(x)在(-∞,0)上是減函數(shù). 證明如下:設x1、x2是(-∞,0)上的兩個任意實數(shù),且x1<x2,則-x1>-x2>0. ∵f(-x)=-f(x),且f(x)在(0,+∞)上是增函數(shù),f(x)<0, ∴F(x1)-F(x2)=. ∴F(x)是(-∞,0)

13、上的減函數(shù). 16.函數(shù)f(x)的定義域為D:{x|x≠0},且滿足對于任意x1、x2∈D,有f(x1·x2)=f(x1)+f(x2). (1)求f(1); (2)判斷f(x)的奇偶性并證明; (3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍. 解:(1)令x1=x2=1得f(1)=f(1)+f(1), ∴f(1)=0. (2)f(x)是偶函數(shù). 證明如下:令x1=x2=-x,得f(x2)=f(-x)+f(-x), 令x1=x2=x,得f(x2)=f(x)+f(x), ∴f(-x)=f(x). ∴f(x)是偶函

14、數(shù). (3)∵f(4)=1, ∴f(16)=f(4)+f(4)=2,f(64)=f(16)+f(4)=3. ∵f(3x+1)+f(2x-6)≤3, ∴f[(3x-1)(2x-6)]≤f(64). ∵f(x)在(0,+∞)上為增函數(shù),f(x)是D上的偶函數(shù), ∴ 解得或<x<3或3<x≤5. ∴x的取值范圍是{x|或<x<3或3<x≤5}. 教學參考例題 志鴻優(yōu)化系列叢書 【例1】 定義在實數(shù)集中的函數(shù)f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0. (1)求證:f(0)=1. (2)求證:y=f(x)是偶函數(shù). (3)

15、若存在常數(shù)c,使,①求證:對任意x∈R,有f(x+c)=-f(x)成立.②試問函數(shù)f(x)是不是周期函數(shù).如果是,找出它的一個周期;如果不是,請說明理由. (1)證明:令x=y(tǒng)=0,則有2f(0)=2f2(0), ∵f(0)≠0,∴f(0)=1. (2)證明:令x=0,則有f(y)+f(-y)=2f(0)·f(y)=2f(y), ∴f(-y)=f(y). ∴f(x)是偶函數(shù). (3)①證明:分別用,(c>0)替換x,y,有 f(x+c)+f(x)=. ∵f()=0, ∴f(x+c)+f(x)=0,即f(x+c)=-f(x). ②解:是.由①的結論,知f(x+2c)=-f(x

16、+c)=-[-f(x)]=f(x), ∴f(x)是周期函數(shù),2c就是它的一個周期. 【例2】 設函數(shù)f(x)在(-∞,+∞)上滿足f(2-x)=f(2+x),f(7-x)=f(7+x),且在閉區(qū)間[0,7]上只有f(1)=f(3)=0. (1)試判斷函數(shù)y=f(x)的奇偶性; (2)試求方程f(x)=0在閉區(qū)間[-2 008,2 008]上的根的個數(shù),并證明你的結論. 解:(1)由f(2-x)=f(2+x),得函數(shù)y=f(x)的對稱軸為x=2, ∴f(-1)=f(5). 而f(5)≠0f(1)≠f(-1),即f(x)不是偶函數(shù). 又∵f(x)在[0,7]上只有f(1)=f(3)

17、=0, ∴f(0)≠0. 從而知函數(shù)y=f(x)不是奇函數(shù). 故函數(shù)y=f(x)是非奇非偶函數(shù). (2)f(4-x)=f(14-x)f(x)=f(x+10). 從而知函數(shù)y=f(x)的周期為T=10. 又f(3)=f(1)=0, ∴f(11)=f(13)=f(-7)=f(-9)=0. 故f(x)在[0,10]和[-10,0]上均有2個根.從而可知函數(shù)y=f(x)在[0,2 000]上有400個根,在[2 000,2 008]上有2個根,在[-2 000,0]上有400個根,在[-2 008,-2 000]上有1個根. ∴函數(shù)y=f(x)在[-2 008,2 008]上有803個根.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!