4、bx,C3:y=logcx, C4:y=logdx的圖象,則a,b,c,d與1的大小關系是() (A)ab1cd (B)ba1dc (C)1abcd (D)ab1dc,類型二,求函數(shù)的定義域、值域,,思路點撥:(1)由偶次根式被開方數(shù)為非負數(shù)及對數(shù)真數(shù)大于0進行求解.,,思路點撥:(2)根據(jù)對數(shù)真數(shù)大于0及偶次根號下被開方數(shù)非負,列出滿足題意的不等式組求解.,,方法技巧 (1)對數(shù)函數(shù)的定義域是真數(shù)全為正數(shù),含對數(shù)式的函數(shù)定義域,經(jīng)常轉化為對數(shù)不等式問題,它的求解方法是化為同底數(shù)的對數(shù),利用對數(shù)函數(shù)的單調性予以解決. (2)求對數(shù)型函數(shù)y=logaf(x)(a0且a1)的值域,需根據(jù)a的范圍及
5、函數(shù)t=f(x)的值域求解.,,,類型三,比較大小,,解析:(1)因為a=log23.6=log43.62, f(x)=log4x在(0,+)上為增函數(shù), 所以log43.62log43.6log43.2, 所以acb.故選B.,【例3】 (1)已知a=log23.6,b=log43.2,c=log43.6,則() (A)abc(B)acb (C)bac(D)cab,,解析:(2)因為a=log3log33=1,0=log71bc.故選A.,(2)若a=log3,b=log76,c=log20.8,則() (A)abc(B)bac (C)cab(D)bca,方法技巧 (1)比較同底數(shù)的對數(shù)值大
6、小,直接使用對數(shù)函數(shù)的單調性. (2)比較不同底數(shù)同真數(shù)的對數(shù)值大小,一個方法是利用圖象的性質,另一種常用方法是換不同底的對數(shù)為同底數(shù)的對數(shù),再結合單調性進行. (3)底數(shù)與真數(shù)都不相同的對數(shù)值比較大小,可以采用放縮法,或借助中間數(shù),或換底,或作差,或作商比較. (4)利用函數(shù)圖象及其相互位置關系來比較大小,是重要的數(shù)學思想數(shù)形結合思想.,,變式訓練3-1:若loga2b1 (D)ba1,,類型四,易錯辨析,,【例4】 (2018貴州銅仁思南中學期中)函數(shù)f(x)=log2(x2-ax+3a)在2,+)上是增函數(shù),則實數(shù)a的取值集合是.,,糾錯:求解含參數(shù)的與對數(shù)函數(shù)有關的復合函數(shù)問題時,不但要結合復合函數(shù)的單調性列出關于參數(shù)的取值范圍問題,而且參數(shù)還要保證對數(shù)的真數(shù)應大于0的條件.,答案:(-4,4,謝謝觀賞!,