《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專(zhuān)題七 數(shù)列課件 理(重點(diǎn)生).ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專(zhuān)題七 數(shù)列課件 理(重點(diǎn)生).ppt(66頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、,,題,,,七,專(zhuān),,,,,,,考法一 等差、等比數(shù)列的基本運(yùn)算和性質(zhì),讀懂題意,構(gòu)建模型,求解模型,,,,會(huì)脫去數(shù)學(xué)文化的背景,讀懂題意,由題意,構(gòu)建等差或等比數(shù)列或遞推關(guān)系 式的模型,利用所學(xué)知識(shí)求解數(shù)列的相關(guān)信息,如指 定項(xiàng)、 通項(xiàng)公式或前n項(xiàng)和,,,考法三 等差、等比數(shù)列的判定與證明,考法四 數(shù)列求和,定義關(guān),應(yīng)用關(guān),運(yùn)算關(guān),,,,會(huì)利用等差數(shù)列或等比數(shù)列的定義,判斷 所給的數(shù)列是等差數(shù)列還是等比數(shù)列,會(huì)應(yīng)用等差(比)數(shù)列的前n項(xiàng)和公式來(lái)求解,認(rèn)真運(yùn)算,此類(lèi)題將迎刃而解,,,會(huì)用公式,會(huì)觀察,會(huì)求和,,,,會(huì)利用等差或等比數(shù)列的通項(xiàng)公式,求出 數(shù)列的通項(xiàng)公式,觀察數(shù)列的通項(xiàng)公式的特征,
2、若其是由若 干個(gè)可求其和的數(shù)列的通項(xiàng)公式組成,則 求和時(shí)可用分組求和法求解,對(duì)分成的各組數(shù)列進(jìn)行求和,,,定通項(xiàng),巧裂項(xiàng),消項(xiàng)求和,,,,會(huì)利用求通項(xiàng)的常見(jiàn)方法求出數(shù)列的通項(xiàng) 公式,對(duì)數(shù)列的通項(xiàng)公式進(jìn)行準(zhǔn)確裂項(xiàng),表示成 兩項(xiàng)之差的形式,把握消項(xiàng)的規(guī)律,求和時(shí)正負(fù)項(xiàng)相消,只 剩下首尾若干項(xiàng),做到準(zhǔn)確求和,,,巧分拆,構(gòu)差式,得結(jié)論,,,,把數(shù)列的通項(xiàng)轉(zhuǎn)化為等差數(shù)列、等比數(shù)列 的通項(xiàng)的和,并求出等比數(shù)列的公比,求出前n項(xiàng)和的表達(dá)式,然后乘以等比數(shù) 列的公比,兩式作差,根據(jù)差式的特征進(jìn)行準(zhǔn)確求和,,,,,,,,,,差什么 找什么,給什么 用什么,求什么 想什么,要求bn的通項(xiàng)公式,還需要求b1和d. 可令bnbn1an中的n1和n2,建立b1和d的方程組求解,題目中給出an的前n項(xiàng)和Sn,anbnbn1.用Sn3n28n求出an,由bnbn1an的關(guān)系求b1,d,求數(shù)列bn的通項(xiàng)公式,想到求首項(xiàng)b1和公差d,注意解題細(xì)節(jié),設(shè)置中間問(wèn)題,,,,,,,在等差數(shù)列與等比數(shù)列綜合問(wèn)題中,如果等比數(shù)列的公比不能確定,則要看其是否有等于1的可能,在數(shù)列的通項(xiàng)問(wèn)題中第一項(xiàng)和后面的項(xiàng)能否用同一個(gè)公式表示等,分析已知條件和求解目標(biāo),確定為最終解決問(wèn)題需要首先求解的中間問(wèn)題如為求和需要先求出通項(xiàng)、為求出通項(xiàng)需要先求出首項(xiàng)和公差(公比)等,確定解題的邏輯次序,謝謝觀看,