《2018年高中數(shù)學(xué) 第五章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 5.1.1 數(shù)的概念的擴(kuò)展課件3 北師大版選修2-2.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年高中數(shù)學(xué) 第五章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 5.1.1 數(shù)的概念的擴(kuò)展課件3 北師大版選修2-2.ppt(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、數(shù)的概念的擴(kuò)展,復(fù)習(xí)回顧,數(shù)系的擴(kuò)充,,,,用圖形表示為:,新課引入,即:在實(shí)數(shù)范圍內(nèi),,引入新數(shù):,實(shí)數(shù)范圍內(nèi)不能解決這個(gè)問(wèn)題,那么我們能 否將實(shí)數(shù)集進(jìn)行擴(kuò)充,使得在新的數(shù)集中,該問(wèn) 題能得到圓滿解決呢?,虛數(shù)單位 :,我們把引入的這個(gè)數(shù) 叫做虛數(shù)單位,并且規(guī)定:,復(fù)數(shù)的定義:,我們把形如a+bi (a,b∈R,i是虛數(shù)單位)的數(shù) 叫做復(fù)數(shù)。全體復(fù)數(shù)所形成的集合叫做復(fù)數(shù)集,一般用字母C表示。,復(fù)數(shù)的代數(shù)形式:,,復(fù)數(shù)的分類(lèi):,對(duì)于復(fù)數(shù),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi是實(shí)數(shù)a; 當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí), z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。
2、,復(fù)數(shù)集與其它集合的關(guān)系:,圖形表示:,,,,,,例1 說(shuō)出下列三個(gè)復(fù)數(shù)的實(shí)部、虛部,并且 指出它們是實(shí)數(shù)還是虛數(shù),如果是虛數(shù)還應(yīng)指出是 否為純虛數(shù):,根據(jù)復(fù)數(shù)的概念,復(fù)數(shù)a+bi 中, b=0時(shí)叫實(shí)數(shù); b≠0時(shí)叫虛數(shù); a=0且b≠0時(shí)叫純虛數(shù)。,分析:,注意: ,虛數(shù)單位的平方是實(shí)數(shù)??!,例題分析,例2 實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m+1+(m-1)i 是:,(1)實(shí)數(shù)? (2)虛數(shù)? (3)純虛數(shù)?,解: (1)當(dāng)m-1=0,即m=1時(shí),復(fù)數(shù)z是實(shí)數(shù); (2)當(dāng)m-1≠0,即m≠1時(shí),復(fù)數(shù)z是虛數(shù); (3)當(dāng)m+1=0,且m-1≠0時(shí),即m=-1時(shí), 復(fù)數(shù)z 是純虛數(shù)。,小結(jié):,,,,,,形如 的數(shù)叫復(fù)數(shù),a 叫復(fù)數(shù)的實(shí)部 Re z, b叫復(fù)數(shù)的虛部Im z。全體復(fù)數(shù)所成的集合叫 做復(fù)數(shù)集,用字母C表示。,* 復(fù)數(shù) 與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系 :,b=0時(shí)是實(shí)數(shù); b≠0時(shí)是虛數(shù); a=0,b≠0時(shí),是純虛數(shù)。,* 復(fù)數(shù)定義:,