(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練8 三角函數(shù)的圖象與性質(zhì)

上傳人:Sc****h 文檔編號:121500390 上傳時間:2022-07-19 格式:DOCX 頁數(shù):9 大?。?.41MB
收藏 版權申訴 舉報 下載
(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練8 三角函數(shù)的圖象與性質(zhì)_第1頁
第1頁 / 共9頁
(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練8 三角函數(shù)的圖象與性質(zhì)_第2頁
第2頁 / 共9頁
(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練8 三角函數(shù)的圖象與性質(zhì)_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練8 三角函數(shù)的圖象與性質(zhì)》由會員分享,可在線閱讀,更多相關《(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練8 三角函數(shù)的圖象與性質(zhì)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題能力訓練8 三角函數(shù)的圖象與性質(zhì)  專題能力訓練第22頁 ? 一、能力突破訓練 1.為了得到函數(shù)y=sin2x-π3的圖象,只需把函數(shù)y=sin 2x的圖象上所有的點(  ) A.向左平行移動π3個單位長度 B.向右平行移動π3個單位長度 C.向左平行移動π6個單位長度 D.向右平行移動π6個單位長度 答案:D 解析:由題意,為得到函數(shù)y=sin2x-π3=sin2x-π6,只需把函數(shù)y=sin2x的圖象上所有點向右平行移動π6個單位長度,故選D. 2.已知函數(shù)y=sin ωx(ω>0)在區(qū)間[0,1]上至少出現(xiàn)2次最大值,則ω的最小值為(  ) A.5π2 B.5π4

2、 C.π D.3π2 答案:A 解析:要使y=sinωx(ω>0)在區(qū)間[0,1]上至少出現(xiàn)2次最大值,則在區(qū)間[0,1]上至少包含54個周期,故只需要54·2πω≤1,故ω≥5π2. 3.(2019全國Ⅱ,理9)下列函數(shù)中,以π2為周期且在區(qū)間π4,π2單調(diào)遞增的是(  ) A.f(x)=|cos 2x| B.f(x)=|sin 2x| C.f(x)=cos|x| D.f(x)=sin|x| 答案:A 解析:y=|cos2x|的圖象為,由圖知y=|cos2x|的周期為π2,且在區(qū)間π4,π2內(nèi)單調(diào)遞增,符合題意;y=|sin2x|的圖象為,由圖知它的周期為π2,但在區(qū)間π4,π

3、2內(nèi)單調(diào)遞減,不符合題意;因為y=cos|x|=cosx,所以它的周期為2π,不符合題意;y=sin|x|的圖象為,由圖知其不是周期函數(shù),不符合題意.故選A. 4.若f(x)=cos x-sin x在區(qū)間[-a,a]上是減函數(shù),則a的最大值是(  ) A.π4 B.π2 C.3π4 D.π 答案:A 解析:f(x)=2cosx+π4,圖象如圖所示,要使f(x)在區(qū)間[-a,a]上為減函數(shù),a的最大為π4. 5.已知函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的圖象關于直線x=π3對稱,若它的最小正周期為π,則函數(shù)f(x)的圖象的一個對稱中心是(  ) A.π3

4、,1 B.π12,0 C.5π12,0 D.-π12,0 答案:B 解析:由題意知T=π,則ω=2. 由函數(shù)圖象關于直線x=π3對稱, 得2×π3+φ=π2+kπ(k∈Z), 即φ=-π6+kπ(k∈Z). ∵|φ|<π2,∴φ=-π6, ∴f(x)=Asin2x-π6. 令2x-π6=kπ(k∈Z),則x=π12+kπ2(k∈Z). ∴函數(shù)f(x)的圖象的一個對稱中心為π12,0.故選B. 6.已知函數(shù)f(x)=5sin x-12cos x,當x=x0時,f(x)有最大值13,則tan x0=     .? 答案:-512 解析:f(x)=5sinx-12cosx=

5、13sin(x-θ)cosθ=513,sinθ=1213. 當x=x0時,f(x)有最大值13,所以x0-θ=π2+2kπ,k∈Z, 所以x0=θ+π2+2kπ,tanx0=tanθ+π2+2kπ=tanθ+π2=1-tanθ=cosθ-sinθ=-512. 7.定義一種運算:(a1,a2)?(a3,a4)=a1a4-a2a3,將函數(shù)f(x)=(3,2sin x)?(cos x,cos 2x)的圖象向左平移n(n>0)個單位長度所得圖象對應的函數(shù)為偶函數(shù),則n的最小值為     .? 答案:5π12 解析:f(x)=3cos2x-2sinxcosx=3cos2x-sin2x=2cos

6、2x+π6,將f(x)的圖象向左平移n個單位長度對應的函數(shù)解析式為f(x)=2cos2(x+n)+π6=2cos2x+2n+π6,要使它為偶函數(shù),則需要2n+π6=kπ(k∈Z),所以n=kπ2-π12(k∈Z).因為n>0,所以當k=1時,n有最小值5π12. 8.函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的部分圖象如圖所示,則f(x)=          .? 答案:2sinπ8x+π4 解析:由題意得A=2,函數(shù)的周期為T=16. ∵T=2πω,∴ω=π8,此時f(x)=2sinπ8x+φ. 由f(2)=2,即sinπ8×2+φ=sinπ4+φ=1,

7、則π4+φ=2kπ+π2,k∈Z, 解得φ=2kπ+π4,k∈Z. ∵|φ|<π2,∴φ=π4, ∴函數(shù)的解析式為f(x)=2sinπ8x+π4. 9.已知函數(shù)f(x)=sin x+λcos x的圖象的一個對稱中心是點π3,0,則函數(shù)g(x)=λsin xcos x+sin2x的圖象的一條對稱軸是     .(寫出其中的一條即可)? 答案:x=-π3(答案不唯一) 解析:將點π3,0代入f(x)=sinx+λcosx,得λ=-3.g(x)=-3sinxcosx+sin2x=-32sin2x+12-12cos2x=12-sin2x+π6,令2x+π6=kπ+π2,k∈Z,得x=kπ2

8、+π6,k∈Z.由k=-1,得x=-π3. 10.已知函數(shù)f(x)=sin2x-cos2x-23sin xcos x(x∈R). (1)求f2π3的值; (2)求f(x)的最小正周期及單調(diào)遞增區(qū)間. 解:(1)由sin2π3=32,cos2π3=-12, f2π3=322--122-23×32×-12, 得f2π3=2. (2)由cos2x=cos2x-sin2x與sin2x=2sinxcosx得f(x)=-cos2x-3sin2x=-2sin2x+π6. 所以f(x)的最小正周期是π. 由正弦函數(shù)的性質(zhì)得π2+2kπ≤2x+π6≤3π2+2kπ,k∈Z, 解得π6+kπ≤

9、x≤2π3+kπ,k∈Z, 所以,f(x)的單調(diào)遞增區(qū)間是π6+kπ,2π3+kπ(k∈Z). 11.已知函數(shù)f(x)=sin2x-sin2x-π6,x∈R. (1)求f(x)的最小正周期; (2)求f(x)在區(qū)間-π3,π4上的最大值和最小值. 解:(1)由已知,有f(x)=1-cos2x2-1-cos2x-π32 =1212cos2x+32sin2x-12cos2x =34sin2x-14cos2x=12sin2x-π6. 所以,f(x)的最小正周期T=2π2=π. (2)因為f(x)在區(qū)間-π3,-π6上是減函數(shù),在區(qū)間-π6,π4上是增函數(shù),f-π3=-14,f-π6

10、=-12,fπ4=34.所以f(x)在區(qū)間-π3,π4上的最大值為34,最小值為-12. 二、思維提升訓練 12.函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象如圖所示,其中A,B兩點之間的距離為5,則f(-1)等于(  ) A.2 B.3 C.-3 D.-2 答案:A 解析:設函數(shù)f(x)的最小正周期為T,因為A,B兩點之間的距離為5,所以T22+42=5,解得T=6. 所以ω=2πT=π3. 又圖象過點(0,1),代入得2sinφ=1, 所以φ=2kπ+π6或φ=2kπ+5π6(k∈Z). 又0≤φ≤π,所以φ=π6或φ=5π6. 所以f(x)=

11、2sinπ3x+π6或f(x)=2sinπ3x+5π6. 對于函數(shù)f(x)=2sinπ3x+π6,當x略微大于0時,有f(x)>2sinπ6=1,與圖象不符,故舍去. 綜上,f(x)=2sinπ3x+5π6. 故f(-1)=2sin-π3+5π6=2. 13.函數(shù)y=11-x的圖象與函數(shù)y=2sin πx(-2≤x≤4)的圖象所有交點的橫坐標之和等于(  ) A.2 B.4 C.6 D.8 答案:D 解析:函數(shù)y1=11-x,y2=2sinπx的圖象有公共的對稱中心(1,0),作出兩個函數(shù)的圖象如圖. 當1

12、圖象, 在區(qū)間1,32和52,72內(nèi)是減函數(shù);在區(qū)間32,52和72,4內(nèi)是增函數(shù). 所以函數(shù)y1在區(qū)間(1,4)內(nèi)函數(shù)值為負數(shù),且與y2的圖象有四個交點E,F,G,H. 相應地,y1在區(qū)間(-2,1)內(nèi)函數(shù)值為正數(shù),且與y2的圖象有四個交點A,B,C,D, 且xA+xH=xB+xG=xC+xF=xD+xE=2,故所求的橫坐標之和為8. 14.如果兩個函數(shù)的圖象平移后能夠重合,那么稱這兩個函數(shù)為“互為生成”函數(shù).給出下列四個函數(shù): ①f(x)=sin x+cos x;②f(x)=2(sin x+cos x); ③f(x)=sin x;④f(x)=2sin x+2. 其中為“互為

13、生成”函數(shù)的是     .(填序號)? 答案:①④ 解析:首先化簡題中的四個解析式可得:①f(x)=2sinx+π4,②f(x)=2sinx+π4,③f(x)=sinx,④f(x)=2sinx+2.可知③f(x)=sinx的圖象要與其他的函數(shù)圖象重合,單純經(jīng)過平移不能完成,必須經(jīng)過伸縮變換才能實現(xiàn),所以③f(x)=sinx不能與其他函數(shù)成為“互為生成”函數(shù);同理①f(x)=2sinx+π4的圖象與②f(x)=2sinx+π4的圖象也必須經(jīng)過伸縮變換才能重合,而④f(x)=2sinx+2的圖象可以向左平移π4個單位長度,再向下平移2個單位長度即可得到①f(x)=2sinx+π4的圖象,所以①

14、④為“互為生成”函數(shù). 15.如圖,在同一個平面內(nèi),向量OA,OB,OC的模分別為1,1,2,OA與OC的夾角為α,且tan α=7,OB與OC的夾角為45°.若OC=mOA+nOB(m,n∈R),則m+n=     .? 答案:3 解析:|OA|=|OB|=1,|OC|=2,由tanα=7,α∈[0,π]得0<α<π2,sinα>0,cosα>0,tanα=sinαcosα,sinα=7cosα,又sin2α+cos2α=1,得sinα=7210,cosα=210,OC·OA=15,OC·OB=1,OA·OB=cosα+π4=-35, 得方程組m-35n=15,-35m+n=1,

15、解得m=54,n=74,所以m+n=3. 16.已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cos x的圖象經(jīng)如下變換得到:先將g(x)圖象上所有點的縱坐標伸長到原來的2倍(橫坐標不變),再將所得到的圖象向右平移π2個單位長度. (1)求函數(shù)f(x)的解析式,并求其圖象的對稱軸方程; (2)已知關于x的方程f(x)+g(x)=m在區(qū)間[0,2π)內(nèi)有兩個不同的解α,β. ①求實數(shù)m的取值范圍; ②證明:cos(α-β)=2m25-1. (1)解將g(x)=cosx的圖象上所有點的縱坐標伸長到原來的2倍(橫坐標不變)得到y(tǒng)=2cosx的圖象,再將y=2cosx的圖象向右平移π2個單位長度

16、后得到y(tǒng)=2cosx-π2的圖象,故f(x)=2sinx. 從而函數(shù)f(x)=2sinx圖象的對稱軸方程為x=kπ+π2(k∈Z). (2)①解f(x)+g(x)=2sinx+cosx =525sinx+15cosx =5sin(x+φ)其中sinφ=15,cosφ=25. 依題意,sin(x+φ)=m5在[0,2π)內(nèi)有兩個不同的解α,β當且僅當m5<1, 故m的取值范圍是(-5,5). ②證法一因為α,β是方程5sin(x+φ)=m在區(qū)間[0,2π)內(nèi)的兩個不同的解, 所以sin(α+φ)=m5,sin(β+φ)=m5. 當1≤m<5時,α+β=2π2-φ, 即α-β=

17、π-2(β+φ); 當-5

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!