《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第十章 復(fù)數(shù)、算法初步、統(tǒng)計與統(tǒng)計案例 課下層級訓(xùn)練57 用樣本估計總體(含解析)文 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第十章 復(fù)數(shù)、算法初步、統(tǒng)計與統(tǒng)計案例 課下層級訓(xùn)練57 用樣本估計總體(含解析)文 新人教A版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課下層級訓(xùn)練五十七) 用樣本估計總體
[A級 基礎(chǔ)強化訓(xùn)練]
1.(2017·全國卷Ⅰ)為評估一種農(nóng)作物的種植效果,選了n塊地作試驗田.這n塊地的畝產(chǎn)量(單位:kg)分別為x1,x2,…,xn,下面給出的指標(biāo)中可以用來評估這種農(nóng)作物畝產(chǎn)量穩(wěn)定程度的是( )
A.x1,x2,…,xn的平均數(shù) B.x1,x2,…,xn的標(biāo)準(zhǔn)差
C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位數(shù)
B [因為可以用極差、方差或標(biāo)準(zhǔn)差來描述數(shù)據(jù)的離散程度,所以要評估畝產(chǎn)量穩(wěn)定程度,應(yīng)該用樣本數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差.]
2.在如圖所示一組數(shù)據(jù)的莖葉圖中,有一個數(shù)字被污染后模糊不清,但曾計
2、算得該組數(shù)據(jù)的極差與中位數(shù)之和為61,則被污染的數(shù)字為( )
2
0
1
5
3
1
1
■
4
4
2
3
5
7
8
A.1 B.2
C.3 D.4
B [由圖可知該組數(shù)據(jù)的極差為48-20=28,則該組數(shù)據(jù)的中位數(shù)為61-28=33,易得被污染的數(shù)字為2.]
3.(2016·全國卷Ⅲ)某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中A點表示十月的平均最高氣溫約為15 ℃,B點表示四月的平均最低氣溫約為5 ℃.下面敘述不正確的是( )
A.各月的平均最低氣溫都在0 ℃
3、以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20 ℃的月份有5個
D [從題中提供的信息及圖中標(biāo)注的數(shù)據(jù)可以看出:深色的圖案是一年十二個月中各月份的平均最低氣溫,顏色稍微淺一點的圖案是一年十二個月中各月份的平均最高氣溫,結(jié)合四個選項可以確定D不正確.因為從圖中可以看出,平均最高氣溫高于20 ℃的只有七、八兩個月份.]
4.(2017·全國卷Ⅲ)某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖(如圖).
根據(jù)該折線圖,下
4、列結(jié)論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
A [對于選項A,由圖易知月接待游客量每年7,8月份明顯高于12月份,故A錯;對于選項B,觀察折線圖的變化趨勢可知年接待游客量逐年增加,故B正確;對于選項C,D,由圖可知顯然正確.]
5.為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序
5、分別編號為第一組,第二組,…,第五組,如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為__________.
12 [志愿者的總?cè)藬?shù)為=50,所以第三組人數(shù)為50×0.36=18,有療效的人數(shù)為18-6=12.]
6.若樣本數(shù)據(jù)x1,x2,…,x10的標(biāo)準(zhǔn)差為8,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的標(biāo)準(zhǔn)差為__________.
16 [若x1,x2,…,xn的標(biāo)準(zhǔn)差為s,則ax1+b,ax2+b,…,axn+b的標(biāo)準(zhǔn)差為as.由題意s=8,則上述標(biāo)準(zhǔn)差為2×8=16.]
7.某校甲、乙兩個班級各有
6、5名編號為1,2,3,4,5的學(xué)生進行投籃練習(xí),每人投10次,投中的次數(shù)如下表:
學(xué)生
1號
2號
3號
4號
5號
甲班
6
7
7
8
7
乙班
6
7
6
7
9
若以上兩組數(shù)據(jù)的方差中較小的一個為s2,則s2=__________.
[由數(shù)據(jù)表可得出乙班的數(shù)據(jù)波動性較大,則其方差較大,甲班的數(shù)據(jù)波動性較小,其方差較小,其平均值為7,方差s2=(1+0+0+1+0)=.]
8.一企業(yè)從某條生產(chǎn)線上隨機抽取100件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標(biāo)值x,得到如下的頻率分布表:
x
[11,13)
[13,15)
[15,17)
[17,1
7、9)
[19,21)
[21,23]
頻數(shù)
2
12
34
38
10
4
(1)作出樣本的頻率分布直方圖,并估計該技術(shù)指標(biāo)值x的平均數(shù)和眾數(shù);
(2)若x<13或x≥21,則該產(chǎn)品不合格.現(xiàn)從不合格的產(chǎn)品中隨機抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于13的產(chǎn)品恰有一件的概率.
解 (1)頻率分布直方圖為
估計平均值=12×0.02+14×0.12+16×0.34+18×0.38+20×0.10+22×0.04=17.08.估計眾數(shù)為18.
(2)設(shè)“從不合格的產(chǎn)品中任取2件,技術(shù)指標(biāo)值小于13的產(chǎn)品恰有一件”為事件A,則P(A)==.
[B級 能力提升訓(xùn)練
8、]
9.某市為了考核甲、乙兩部門的工作情況,隨機訪問了50位市民.根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價越高),繪制莖葉圖如下:
(1)分別估計該市的市民對甲、乙兩部門評分的中位數(shù);
(2)分別估計該市的市民對甲、乙兩部門的評分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對甲、乙兩部門的評價.
解 (1)由所給莖葉圖知,將50位市民對甲部門的評分由小到大排序,排在第25,26位的是75,75,故樣本的中位數(shù)為75,所以該市的市民對甲部門評分的中位數(shù)的估計值是75.
50位市民對乙部門的評分由小到大排序,排在第25,26位的是66,68,故樣本的中位數(shù)為=6
9、7,所以該市的市民對乙部門評分的中位數(shù)的估計值是67.
(2)由所給莖葉圖知,50位市民對甲、乙部門的評分高于90的比率分別為=0.1,=0.16,故該市的市民對甲、乙部門的評分高于90的概率的估計值分別為0.1,0.16.
(3)由所給莖葉圖知,市民對甲部門的評分的中位數(shù)高于對乙部門的評分的中位數(shù),而且由莖葉圖可以大致看出對甲部門的評分的標(biāo)準(zhǔn)差要小于對乙部門的評分的標(biāo)準(zhǔn)差,說明該市市民對甲部門的評價較高、評價較為一致,對乙部門的評價較低、評價差異較大.
10.隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機APP軟件層出不窮.現(xiàn)從使用A和B兩款訂餐軟件的商家中分別隨機抽取50個商家,對它們的
10、“平均送達時間”進行統(tǒng)計,得到頻率分布直方圖如下.
(1)試估計使用A款訂餐軟件的50個商家的“平均送達時間”的眾數(shù)及平均數(shù);
(2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
①能否認(rèn)為使用B款訂餐軟件“平均送達時間”不超過40分鐘的商家達到75%?
②如果你要從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?說明理由.
解 (1)依題意可得,使用A款訂餐軟件的50個商家的“平均送達時間”的眾數(shù)為55分鐘.
使用A款訂餐軟件的50個商家的“平均送達時間”的平均數(shù)為:
15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40(分鐘).
(2)①使用B款訂餐軟件“平均送達時間”不超過40分鐘的商家的比例估計值為0.04+0.20+0.56=0.80=80%>75%.
故可以認(rèn)為使用B款訂餐軟件“平均送達時間”不超過40分鐘的商家達到75%.
②使用B款訂餐軟件的50個商家的“平均送達時間”的平均數(shù)為15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,
所以選B款訂餐軟件.
6