2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)12 函數(shù)模型及其應(yīng)用 理(含解析)北師大版

上傳人:Sc****h 文檔編號:116657422 上傳時(shí)間:2022-07-06 格式:DOC 頁數(shù):7 大?。?.48MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)12 函數(shù)模型及其應(yīng)用 理(含解析)北師大版_第1頁
第1頁 / 共7頁
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)12 函數(shù)模型及其應(yīng)用 理(含解析)北師大版_第2頁
第2頁 / 共7頁
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)12 函數(shù)模型及其應(yīng)用 理(含解析)北師大版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)12 函數(shù)模型及其應(yīng)用 理(含解析)北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)12 函數(shù)模型及其應(yīng)用 理(含解析)北師大版(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、課后限時(shí)集訓(xùn)(十二) 函數(shù)模型及其應(yīng)用 (建議用時(shí):60分鐘) A組 基礎(chǔ)達(dá)標(biāo) 一、選擇題 1.某新產(chǎn)品投放市場后第一個(gè)月銷售100臺,第二個(gè)月銷售200臺,第三個(gè)月銷售400臺,第四個(gè)月銷售790臺,則下列函數(shù)模型中能較好地反映銷量y與投放市場的月數(shù)x之間關(guān)系的是(  ) A.y=100x      B.y=50x2-50x+100 C.y=50×2x D.y=100log2 x+100 C [根據(jù)函數(shù)模型的增長差異和題目中的數(shù)據(jù)可知,應(yīng)為指數(shù)函數(shù)模型.故選C.] 2.某市生產(chǎn)總值連續(xù)兩年持續(xù)增加.第一年的增長率為p,第二年的增長率為q,則該市這兩年生產(chǎn)總值的年平均增

2、長率為(  ) A. B. C. D.-1 D [設(shè)年平均增長率為x,原生產(chǎn)總值為a,則a(1+p)(1+q)=a(1+x)2,解得x=-1,故選 D.] 3.(2017·北京高考)根據(jù)有關(guān)資料,圍棋狀態(tài)空間復(fù)雜度的上限M約為3361,而可觀測宇宙中普通物質(zhì)的原子總數(shù)N約為1080.則下列各數(shù)中與最接近的是(參考數(shù)據(jù):lg 3≈0.48)(  ) A.1033 B.1053 C.1073 D.1093 D [由題意,lg =lg =lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=

3、33,lg 1053=53,lg 1073=73,lg 1093=93, 故與最接近的是1093. 故選D.] 4.血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度.藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示. 根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說法中不正確的是(  ) A.首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用 B.每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒 C.每間隔5.5小時(shí)服用該藥物1單位,

4、可使藥物持續(xù)發(fā)揮治療作用 D.首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒 D [結(jié)合圖像易知A,B,C均正確,D選項(xiàng)中的描述會(huì)中毒,故選 D.] 5.某市家庭煤氣的使用量x(m3)和煤氣費(fèi)f(x)(元)滿足關(guān)系f(x)=已知某家庭2018年前三個(gè)月的煤氣費(fèi)如下表: 月份 用氣量 煤氣費(fèi) 一月份 4 m3 4元 二月份 25 m3 14元 三月份 35 m3 19元 若四月份該家庭使用了20 m3的煤氣,則其煤氣費(fèi)為(  ) A.11.5元 B.11元 C.10.5元 D.10元 A [根據(jù)題意可知f(4)=C=4,f(

5、25)=C+B(25-A)=14,f(35)=C+B(35-A)=19,解得A=5,B=,C=4,所以f(x)=所以f(20)=4+(20-5)=11.5,故選A.] 二、填空題 6.?dāng)M定甲、乙兩地通話m分鐘的電話費(fèi)(單位:元)由f(m)=1.06(0.5[m]+1)給出,其中m>0,[m]是不超過m的最大整數(shù)(如[3]=3,[3.7]=3,[3.1]=3),則甲、乙兩地通話6.5分鐘的電話費(fèi)為________元. 4.24 [∵m=6.5, ∴[6.5]=6, ∴f(6.5)=1.06(0.5×6+1)=4.24.] 7.在如圖所示的銳角三角形空地中,欲建一個(gè)面積最大的內(nèi)接矩形花

6、園(陰影部分),則其邊長x為________m. 20 [設(shè)內(nèi)接矩形另一邊長為y,則由相似三角形性質(zhì)可得=,解得y=40-x,所以面積S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40), 當(dāng)x=20時(shí),Smax=400.] 8.已知投資x萬元經(jīng)銷甲商品所獲得的利潤為P=;投資x萬元經(jīng)銷乙商品所獲得的利潤為Q= (a>0). 若投資20萬元同時(shí)經(jīng)銷這兩種商品或只經(jīng)銷其中一種商品,使所獲得的利潤不少于5萬元,則a的最小值為________.  [設(shè)投資乙商品x萬元(0≤x≤20),則投資甲商品(20-x)萬元. 利潤分別為Q= (a>0),P=, 因?yàn)镻+Q

7、≥5,0≤x≤20時(shí)恒成立, 則化簡得a≥,0≤x≤20時(shí)恒成立. (1)x=0時(shí),a為一切實(shí)數(shù); (2)0<x≤20時(shí),分離參數(shù)a≥,0<x≤20時(shí)恒成立, 所以a≥,a的最小值為.] 三、解答題 9.網(wǎng)店和實(shí)體店各有利弊,兩者的結(jié)合將在未來一段時(shí)期內(nèi),成為商業(yè)的一個(gè)主要發(fā)展方向.某品牌行車記錄儀支架銷售公司從2018年1月起開展網(wǎng)絡(luò)銷售與實(shí)體店體驗(yàn)安裝結(jié)合的銷售模式.根據(jù)幾個(gè)月運(yùn)營發(fā)現(xiàn),產(chǎn)品的月銷售x萬件與投入實(shí)體店體驗(yàn)安裝的費(fèi)用t萬元之間滿足x=3-函數(shù)關(guān)系式.已知網(wǎng)店每月固定的各種費(fèi)用支出為3萬元,產(chǎn)品每1萬件進(jìn)貨價(jià)格為32萬元,若每件產(chǎn)品的售價(jià)定為“進(jìn)貨價(jià)的150%”與“

8、平均每件產(chǎn)品的實(shí)體店體驗(yàn)安裝費(fèi)用的一半”之和,求該公司最大月利潤是多少萬元. [解] 由題知t=-1,(1<x<3), 所以月利潤:y=x-32x-3-t=16x--3=16x-+-3=45.5-≤45.5-2=37.5, 當(dāng)且僅當(dāng)x=時(shí)取等號,即月最大利潤為37.5萬元. 10.某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得投資收益的范圍是[10,100](單位:萬元).現(xiàn)準(zhǔn)備制定一個(gè)對科研課題組的獎(jiǎng)勵(lì)方案:資金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加且資金不超過5萬元,同時(shí)資金不超過投資收益的20%. (1)若建立函數(shù)模型y=f(x)制定獎(jiǎng)勵(lì)方案,請你根據(jù)題意,

9、寫出獎(jiǎng)勵(lì)函數(shù)模型應(yīng)滿足的條件; (2)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(ⅰ)y=x+1; (ⅱ)y=log2x-2.試分析這兩個(gè)函數(shù)模型是否符合公司要求. [解] (1)設(shè)獎(jiǎng)勵(lì)函數(shù)模型為y=f(x), 則該函數(shù)模型滿足的條件是: ①當(dāng)x∈[10,100]時(shí),f(x)是增函數(shù); ②當(dāng)x∈[10,100]時(shí),f(x)≤5恒成立. ③當(dāng)x∈[10,100]時(shí),f(x)≤恒成立. (2)(a)對于函數(shù)模型(ⅰ)y=x+1, 它在[10,100]上是增函數(shù),滿足條件①; 但當(dāng)x=80時(shí),y=5,因此,當(dāng)x>80時(shí),y>5,不滿足條件②; 故該函數(shù)模型不符合公司要求. (b)對于函數(shù)模型(ⅱ

10、)y=log2x-2,它在[10,100]上是增函數(shù),滿足條件①, x=100時(shí),ymax=log2 100-2=2log2 5<5,即f(x)≤5恒成立.滿足條件②, 設(shè)h(x)=log2x-2-x,則h′(x)=-, 又x∈[10,100],所以≤≤, 所以h′(x)<-<-=0, 所以h(x)在[10,100]上是遞減的, 因此h(x)<h(10)=log210-4<0, 即f(x)≤恒成立,滿足條件③, 故該函數(shù)模型符合公司要求. 綜上所述,函數(shù)模型(ⅱ)y=log2x-2符合公司要求. B組 能力提升 1.(2019·武漢檢測)某汽車銷售公司在A,B兩地銷售同一

11、種品牌的汽車,在A地的銷售利潤(單位:萬元)為y1=4.1x-0.1x2,在B地的銷售利潤(單位:萬元)為y2=2x,其中x為銷售量(單位:輛),若該公司在兩地共銷售16輛該種品牌的汽車,則能獲得的最大利潤是(  ) A.10.5萬元 B.11萬元 C.43萬元 D.43.025萬元 C [設(shè)公司在A地銷售該品牌的汽車x輛,則在B地銷售該品牌的汽車(16-x)輛,所以可得利潤y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-2+×+32.因?yàn)閤∈[0,16]且x∈N,所以當(dāng)x=10或11時(shí),總利潤取得最大值43萬元.] 2.(2018·山西一模)如圖

12、,Rt△ABC中,AB⊥BC,|AB|=,|BC|=.若其頂點(diǎn)A在x軸上運(yùn)動(dòng),頂點(diǎn)B在y軸的非負(fù)半軸上運(yùn)動(dòng).設(shè)頂點(diǎn)C的橫坐標(biāo)非負(fù),縱坐標(biāo)為y,且直線AB的傾斜角為θ,則函數(shù)y=f(θ)的圖像大致是(  )         A         B         C         D A [當(dāng)θ=π時(shí),y=,排除B和C;當(dāng)θ=0時(shí),y取得最小值-,排除D,故選A.] 3.某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年增加研發(fā)資金投入,若該公司2018年全年投入的研發(fā)資金為300萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長10%,則該公司全年投入的研發(fā)資金開始超過600萬元的

13、年份是________.(參考數(shù)據(jù):lg 1.1=0.041,lg 2=0.301) 2026 [設(shè)從2018年后,第x年該公司全年投入的研發(fā)資金為y萬元,則y=300×(1+10%)x,依題意得,300×(1+10%)x>600,即1.1x>2,兩邊取對數(shù)可得x>=≈7.3,則x≥8,即該公司全年投入的研發(fā)資金開始超過600萬元的年份是2026年.] 4.(2019·湖北八校聯(lián)考)已知某工廠每天固定成本是4萬元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價(jià)定為a元時(shí),生產(chǎn)x(x>0)件產(chǎn)品的銷售收入是R(x)=-x2+500x(元),P(x)為每天生產(chǎn)x件產(chǎn)品的平均利潤(平均利潤

14、=).銷售商從工廠以每件a元進(jìn)貨后,又以每件b元銷售,且b=a+λ(c-a),其中c為最高限價(jià)(a<b<c),λ為銷售樂觀系數(shù),據(jù)市場調(diào)查,λ由當(dāng)b-a是c-b,c-a的比例中項(xiàng)時(shí)來確定. (1)每天生產(chǎn)量x為多少時(shí),平均利潤P(x)取得最大值?并求P(x)的最大值; (2)求樂觀系數(shù)λ的值; (3)若c=600,當(dāng)廠家平均利潤最大時(shí),求a與b的值. [解] (1)依題意設(shè)總利潤為L(x),則L(x)=-x2+500x-100x-40 000=-x2+400x-40 000(x>0), ∴P(x)==-x-+400≤-200+400=200,當(dāng)且僅當(dāng)x=,即x=400時(shí)等號成立. 故當(dāng)每天生產(chǎn)量為400件時(shí),平均利潤最大,最大值為200元. (2)由b=a+λ(c-a),得λ=. ∵b-a是c-b,c-a的比例中項(xiàng), ∴(b-a)2=(c-b)(c-a), 兩邊同時(shí)除以(b-a)2,得1=·=, ∴1=·,解得λ=或λ=(舍去). 故樂觀系數(shù)λ的值為. (3)∵廠家平均利潤最大,∴a=+100+P(x)=+100+200=400. 由b=a+λ(c-a),結(jié)合(2)可得b-a=λ(c-a)=100(-1), ∴b=100(+3). 故a與b的值分別為400,100(+3). - 7 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!