《江西省吉安市鳳凰中學(xué)2020高二數(shù)學(xué) 第1講 集合的概念及運(yùn)算小題訓(xùn)練 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《江西省吉安市鳳凰中學(xué)2020高二數(shù)學(xué) 第1講 集合的概念及運(yùn)算小題訓(xùn)練 新人教A版(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、江西省吉安市鳳凰中學(xué)2020高二數(shù)學(xué) 第1講 集合的概念及運(yùn)算小題訓(xùn)練 新人教A版
一、考試目標(biāo)
模塊
內(nèi)容
能力層級(jí)
備注
A
B
C
D
數(shù)
學(xué)
1
集合的含義
√
集合之間的包含與相等的含義
√
全集與空集的含義
√
兩個(gè)集合的并集與交集的含義及計(jì)算
√
補(bǔ)集的含義及求法
√
用Venn圖表示集合的關(guān)系及運(yùn)算
√
二、 考點(diǎn)解讀與案例剖析
1、集合的含義與表示
⑴集合的概念:
2、
(2)集合元素的特征:
⑶集合與元素的關(guān)系:
(4)集合的表示法:
典例分析:
例1、已知集合,若,則 ;
2、集合間的基本關(guān)系
⑴、集合的包含關(guān)系:子集、真子集、集合相等:
關(guān)系
含義
符號(hào)表示
圖形表示
子 集
真子集
3、
集合相等
(2) 、若集合A中有n個(gè)元素,則A的子集個(gè)數(shù)有 ,A的非空子集個(gè)數(shù)有 ,A的非空真子集有 。
(3)、案例剖析
例2、已知集合,則A可以是( )
A、 B、 C、 D、
3、集合的基本運(yùn)算
⑴集合的并、交、補(bǔ)運(yùn)算及性質(zhì)
名稱
符號(hào)表示
Venn圖
運(yùn)算性質(zhì)
并集
交集
三、學(xué)考真題演練與達(dá)標(biāo)練習(xí)
1.(09年) 已知集合,,則( ) .
A、
4、 B、 C、 D、
2.(10年)已知集合={1,2},={2,3}, 則=( )
A 、{1,2} B 、{2,3} C 、{1,3} D 、{1,2,3}
3.(11年)已知集合,,則等于( )
A、 B、 C、 D、
4.(12年)已知集合,,若,則的值為( )
A、3 B、2 C、0 D、-1
5、
5.(13年)已知集合,,若,則的值為( )
A. B. C. D.
6.下列表達(dá)式正確的是( )
A、 B、 C、 D、
7.已知全集,則=( )
A、 B、 C、 D、
8. 已知集合,,則=( )
或
9.集合的真子集的個(gè)數(shù)是( )
A、16 B、8 C、7 D、4
第2講:函數(shù)及其表示
一、 考試目標(biāo)
模塊
內(nèi)容
能力層級(jí)
備注
6、
A
B
C
D
數(shù)學(xué)
1
函數(shù)的概念
√
求簡(jiǎn)單函數(shù)的定義域和值域
√
函數(shù)的表示法
√
簡(jiǎn)單的分段函數(shù)及應(yīng)用
√
二、考點(diǎn)解讀及案例剖析
1、函數(shù)的概念及表示
(1)函數(shù)的概念:
(2)一個(gè)函數(shù)的三要素:
(3)一個(gè)函數(shù)的表示法:
7、
案例剖析:
例1、下列哪一組中的函數(shù)與相等( )
A、 B、
C、 D、
例2、求下列函數(shù)的定義域;
⑴ ⑵
⑶ ⑷
⑷小結(jié)簡(jiǎn)單函數(shù)的定義域
函數(shù)模型
定義域
2、 分段函數(shù)
例1.已知函數(shù) ,則的值為:( )
A. B. C. D.
例2.已知函數(shù)的圖象如下圖所示: 若方程有三個(gè)根,求= .
8、
三、 會(huì)考真題演練與達(dá)標(biāo)練習(xí)
1、(10年)已知函數(shù),f(1)=2,則函數(shù)f(x)的解析式是( )
A 、f(x)=4x B 、f(x)= C、 f(x)=2x D 、f(x)=
2、(09年) 已知函數(shù),則 ;
3、(13年)已知函數(shù),則的值為( )
A. B. C. D.
4、與函數(shù)是相同函數(shù)的是( )
A、 B、 C、 D、
5、函數(shù)的定義域是 ; (用區(qū)間表示)
6、函數(shù)的值域?yàn)? ; (用區(qū)間表示)
7、已知函數(shù)
(1)求函數(shù)定義域; (2)求函數(shù)的值域。