(浙江專用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 階段質(zhì)量檢測(三)專題一-三“綜合檢測”

上傳人:xt****7 文檔編號:106104106 上傳時間:2022-06-13 格式:DOC 頁數(shù):12 大?。?00KB
收藏 版權(quán)申訴 舉報 下載
(浙江專用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 階段質(zhì)量檢測(三)專題一-三“綜合檢測”_第1頁
第1頁 / 共12頁
(浙江專用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 階段質(zhì)量檢測(三)專題一-三“綜合檢測”_第2頁
第2頁 / 共12頁
(浙江專用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 階段質(zhì)量檢測(三)專題一-三“綜合檢測”_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(浙江專用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 階段質(zhì)量檢測(三)專題一-三“綜合檢測”》由會員分享,可在線閱讀,更多相關(guān)《(浙江專用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 階段質(zhì)量檢測(三)專題一-三“綜合檢測”(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、(浙江專用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 階段質(zhì)量檢測(三)專題一-三“綜合檢測” 一、選擇題(本大題共10小題,每小題4分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的) 1.(2018·浙江名校聯(lián)考)已知首項為1的等差數(shù)列{an}的公差為d,前n項和為Sn,且S2,S4,S8成等比數(shù)列,則(  ) A.a(chǎn)2=1         B.{an}是單調(diào)數(shù)列 C.Sn≥an恒成立 D.?dāng)?shù)列是等比數(shù)列 解析:選C 由a1=1及S2,S4,S8成等比數(shù)列,可得S=S2·S8?d2=2d?d=0或d=2.當(dāng)d=0時,an=1,Sn=n,當(dāng)d=2時,an=2n-1,Sn=n2,故

2、Sn≥an恒成立,選C. 2.(2018·杭州模擬)已知數(shù)列{an}滿足a1=1,a2=3,且an+an+1=n+3,則a3+a4-a5=(  ) A.1 B.2 C.3 D.4 解析:選C 由已知,an+1=n+3-an, ∴a3=2+3-a2=2, a4=3+3-a3=4,a5=4+3-a4=3, ∴a3+a4-a5=3,故選C. 3.已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,若a2-c2=2b,sin B=4cos A·sin C,則b=(  ) A. B. C.2 D.4 解析:選D 由題意得,sin B=sin(A+C)=sin

3、 Acos C+cos Asin C,所以sin Acos C+cos Asin C=4cos A·sin C,所以sin Acos C=3cos Asin C,由正弦定理和余弦定理得a·=3c·,化簡得a2-c2=b2,又a2-c2=2b,所以b2=2b,解得b=4或b=0(舍去),所以b=4,故選D. 4.(2018·浙江考前熱身聯(lián)考)如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線和虛線畫出的是某空間幾何體的三視圖,則該幾何體的體積為(  ) A. B. C.2 D.4 解析:選B 構(gòu)造棱長為2的正方體如圖所示,由三視圖知該幾何體是圖中的四棱錐P-ABCD,其中B,D分別為棱

4、的中點,則其體積V=××2=.故選B. 5.(2018·嘉興高三測試)由函數(shù)y=cos 2x的圖象變換得到函數(shù)y=cos的圖象,這個變換可以是(  ) A.向左平移個單位長度 B.向右平移個單位長度 C.向左平移個單位長度 D.向右平移個單位長度 解析:選B 由于函數(shù)y=cos=cos 2,因此該函數(shù)的圖象是由函數(shù)y=cos 2x的圖象向右平移個單位長度得到的,故選B. 6.(2018·浙江考前模擬)對于數(shù)列{an},“|an+1|

5、要條件 解析:選A 若|an+1|0時,則an+1

6、中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的底層共有燈(  ) A.186盞 B.189盞 C.192盞 D.96盞 解析:選C 設(shè)塔的底層共有燈x盞,則各層的燈數(shù)從下到上構(gòu)成一個首項為x,公比為的等比數(shù)列,則=381,解得x=192. 8.(2018·浙江名校聯(lián)考信息卷)中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“今有中試舉人壹百名,第一名官給銀一百兩,自第二名以下挨次各減五錢,問:該銀若干?”其大意為:現(xiàn)有100名中試舉人,朝廷發(fā)銀子獎勵他們,第1名發(fā)銀子100兩,自第2名起,依次比前1名少發(fā)5錢(每10錢為1兩),問:朝廷總共發(fā)了多少銀子?則朝廷發(fā)的銀子共有(  ) A

7、.10 000兩 B.7 525兩 C.5 050兩 D.4 950兩 解析:選B 根據(jù)題意,記第n名中試舉人所得的銀子(單位:兩)為an(1≤n≤100,n∈N*),則數(shù)列{an}是首項為100,公差為-的等差數(shù)列,則其前100項和S100=100a1+×=100×100+50×99×=7 525,故朝廷總共發(fā)了7 525兩銀子.故選B. 9.(2018·浙江五校聯(lián)考)如圖,已知在平行四邊形ABCD中,E,M分別為DC的兩個三等分點,F(xiàn),N分別為BC的兩個三等分點,且·=25,·=43,則||2+||2=(  ) A.45 B.60 C.90 D.180 解析

8、:選C 設(shè)=a,=b,依題意得=+=a+b,=+=a+b,=+=a+b,=+=a+b, ∵·=25,·=43, ∴ 即 解得a2+b2=45,∴||2+||2=|a+b|2+|b-a|2=(a+b)2+(b-a)2=2(a2+b2)=90.故選C. 10.(2019屆高三·湖州聯(lián)考)記數(shù)列{an}的前n項和為Sn,若不等式a+≥ma對任意等差數(shù)列{an}及任意正整數(shù)n都成立,則實數(shù)m的最大值為(  ) A. B. C. D.1 解析:選A a+=a+2=a+2, 令(n-1)d=t, 則a+=(a1+2t)2+(a1+t)2=2a+6ta1+5t2=52+a, 當(dāng)t=

9、時,取到最小值. 即(n-1)d=,即n=+1, ∵不等式a+≥ma對任意等差數(shù)列{an}及任意正整數(shù)n都成立, ∴m≤,∴實數(shù)m的最大值為.故選A. 二、填空題(本大題共7小題,多空題每題6分,單空題每題4分,共36分) 11.(2018·邢臺摸底)若正項數(shù)列{an}滿足a2=,a6=,且=(n≥2,n∈N*),則log2a4=________. 解析:由=(n≥2,n∈N*)可得數(shù)列{an}是等比數(shù)列,所以a=a2a6=,又a4>0,則a4=,故log2a4=log2=-3. 答案:-3 12.(2018·紹興模擬)已知數(shù)列{an}的奇數(shù)項依次構(gòu)成公差為d1的等差數(shù)列,偶數(shù)

10、項依次構(gòu)成公差為d2的等差數(shù)列(其中d1,d2為整數(shù)),且對任意n∈N*,都有an

11、)d2<1+kd1, 取k=2時,可得1+d1<2+d2<1+2d1. ∴d1=3=d2. ∴a8=a2+3d2=2+3×3=11. 答案:3 11 13.在△ABC中,AB=3,AC=2,A=60°,=m+,則||的最小值為________,又若⊥,則m=________. 解析:因為=m+,所以||2=m2||2+||2+2m·=9m2+4+2m||·||·cos 60°=9m2+6m+4=92+3.當(dāng)m=-時,||2取得最小值為3,所以||的最小值為.在△ABC中,AB=3,AC=2,A=60°,所以|BC|2=4+9-2×2×3cos 60°=7,所以|BC|=,所以cos

12、 B==,cos C== .因為⊥,所以·=0,所以(m+)·=0,所以m·+·=0,所以m||·||cos(π-B)+||·||cos C=0,所以-3mcos B+2cos C=0,所以m==××=. 答案:  14.已知正項數(shù)列{an}的前n項和Sn滿足Sn和2的等比中項等于an和2的等差中項,則a1=________,Sn=________. 解析:由題意知=,則Sn=. ① 由a1=S1得=,解得a1=2. 又由①式得Sn-1=(n≥2), ② ①-②可得an=Sn-Sn-1=-(n≥2),整理得(an+an-1)(an-an-1-4)=0.

13、 ∵數(shù)列{an}的各項都是正數(shù), ∴an-an-1-4=0,即an-an-1=4. 故數(shù)列{an}是以2為首項,4為公差的等差數(shù)列, ∴Sn=2n+×4=2n2. 答案:2 2n2 15.已知數(shù)列{an}滿足a1=,an+1=a+an,[x]表示不超過x的最大整數(shù),則 (1)=________; (2)=________. 解析:(1)由題意得a2=a+a1=, 所以+=+=, 所以=1. (2)因為an+1=a+an, 所以==-, 即=-, 所以++…+ =-+-+…+-=-. 而an+1=a+an>an, 所以數(shù)列{an}單調(diào)遞增且各項均為正數(shù), 所以

14、++…+=-<=2. 又結(jié)合(1)可知++…+>1, 所以=1. 答案:(1)1 (2)1 16.(2018·紹興高三監(jiān)測考試)在數(shù)列{an}中,a1+++…+=2n-1(n∈N*),且a1=1,若存在n∈N*使得an≤n(n+1)λ成立,則實數(shù)λ的最小值為________. 解析:由題意知,a1++…+=2n-1, 則n≥2時,有a1++…+=2n-1-1, 兩式作差得,=2n-2n-1=2n-1, 且=21-1=1, 所以=2n-1(n∈N*), =, 令bn=,則bn>0, ==>=1, 所以bn+1>bn,數(shù)列{bn}是遞增數(shù)列,數(shù)列{bn}的最小項是b1=,

15、 依題意得,存在n∈N*使得λ≥=bn成立, 即有λ≥b1=,λ的最小值是. 答案: 17.(2018·浙江名校聯(lián)考)如圖,已知正四面體D -ABC,P為線段AB上的動點(端點除外),則二面角D -PC-B的平面角的余弦值的取值范圍是________. 解析:當(dāng)點P從點A運動到點B時,二面角D -PC-B的平面角逐漸增大,二面角D -PC-B的平面角最小趨近于二面角D -AC-B的平面角,最大趨近于二面角D -BC-A的平面角的補角.設(shè)正四面體的棱長為2,如圖所示,取AC的中點為E.連接DE,BE,易知∠DEB為二面角D-AC-B的平面角,DE=BE=,所以cos∠DEB==,同理二

16、面角D -BC-A的平面角的補角的余弦值為-,故二面角D-PC-B的平面角的余弦值的取值范圍是. 答案: 三、解答題(本大題共5小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟) 18.(本小題滿分14分)(2018·杭州一中調(diào)考)已知數(shù)列{an}是等差數(shù)列,Sn是其前n項和,且a1=2,S3=12. (1)求數(shù)列{an}的通項公式; (2)設(shè)bn=an+4n,求數(shù)列{bn}的前n項和Tn. 解:(1)∵數(shù)列{an}是等差數(shù)列,Sn是其前n項和,a1=2,S3=12, ∴S3=3×2+d=12,解得d=2, ∴an=2+(n-1)×2=2n. (2)∵bn=an+4

17、n=2n+4n, ∴Tn=2(1+2+3+…+n)+(4+42+43+…+4n) =2×+ =n2+n+-. 19.(本小題滿分15分)已知函數(shù)f(x)=2sin xcos x+2cos2x-. (1)求函數(shù)y=f(x)的最小正周期和單調(diào)遞減區(qū)間; (2)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f=,且sin B+sin C=,求bc的值. 解:(1)f(x)=2sin xcos x+2cos2x-=sin 2x+cos 2x=2sin, 因此f(x)的最小正周期為T==π. 由2kπ+≤2x+≤2kπ+(k∈Z), 得kπ+≤x≤k

18、π+(k∈Z), 所以f(x)的單調(diào)遞減區(qū)間為(k∈Z). (2)由f=2sin=2sin A=,且A為銳角,所以A=. 由正弦定理可得2R===, sin B+sin C==, 則b+c=×=13, 所以cos A===, 所以bc=40. 20.(本小題滿分15分)(2019·貴陽摸底)如圖,CD,AB分別是圓柱的上、下底面圓的直徑,四邊形ABCD是邊長為2的正方形,E是底面圓周上不同于A,B兩點的一點,AE=1. (1)求證:BE⊥平面DAE; (2)求二面角C-DB-E的余弦值. 解:(1)證明:由圓柱的性質(zhì)知,DA⊥平面ABE, 又BE?平面ABE,∴BE⊥D

19、A, ∵AB是底面圓的直徑,E是底面圓周上不同于A,B兩點的一點, ∴BE⊥AE. 又DA∩AE=A,DA?平面DAE,AE?平面DAE, ∴BE⊥平面DAE. (2)法一:如圖,過E作EF⊥AB,垂足為F,由圓柱的性質(zhì)知平面ABCD⊥平面ABE, ∴EF⊥平面ABCD. 過F作FH⊥DB,垂足為H,連接EH, 則∠EHF即所求的二面角的平面角的補角, 由AB=AD=2,AE=1, 得DE=,BE=,BD=2, ∴EF==, 由(1)知BE⊥DE,∴EH===, ∴sin∠EHF===, ∴cos∠EHF= =, ∴二面角C-DB-E的余弦值為-. 法二:過A在

20、平面AEB內(nèi)作垂直于AB的直線,建立如圖所示的空間直角坐標(biāo)系, ∵AB=AD=2,AE=1, ∴BE=,∴E, D(0,0,2),B(0,2,0), ∴=,=(0,-2,2). 設(shè)平面EBD的法向量為n=(x,y,z), 則即 取z=1,則n=(,1,1)為平面EBD的一個法向量. 易知平面CDB的一個法向量為m=(1,0,0), ∴cos〈m,n〉===, 由圖知,二面角C-DB-E為鈍角, ∴二面角C-DB-E的余弦值為-. 21.(本小題滿分15分)(2018·湖州、衢州、麗水聯(lián)考)數(shù)列{an}中,a1=,an+1=(n∈N*). (1)求證:an+1

21、 (2)記數(shù)列{an}的前n項和為Sn,求證:Sn<1. 證明:(1)∵a-an+1=2+>0, 且a1=>0,∴an>0, ∴an+1-an=-an=<0. ∴an+12,且對任意n∈N*,都有

22、Sn≥na1-(n-1),證明:Sn<2n+1. 解:(1)由a2>a1>0?a1+-1>a1>0, 解得0a2>0?a2+-1>a2>0?00,即an+1>a

23、n, ∴{an}是遞增數(shù)列,a1的取值范圍是(1,2). (2)證明:∵a1>2,可用數(shù)學(xué)歸納法證明:an>2對?n∈N*都成立. 于是an+1-an=-1<0,即數(shù)列{an}是遞減數(shù)列. 在Sn≥na1-(n-1)中,令n=2,可得2a1+-1=S2≥2a1-,解得a1≤3, 因此2時不合題意. 事實上,當(dāng)0),由(*)可得Sn時不合題意. 綜上可得2

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!