2022高考數(shù)學”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練1 文

上傳人:xt****7 文檔編號:105990902 上傳時間:2022-06-13 格式:DOC 頁數(shù):5 大?。?14KB
收藏 版權申訴 舉報 下載
2022高考數(shù)學”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練1 文_第1頁
第1頁 / 共5頁
2022高考數(shù)學”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練1 文_第2頁
第2頁 / 共5頁
2022高考數(shù)學”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練1 文_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練1 文》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練1 文(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高考數(shù)學”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練1 文 1.已知數(shù)列{an}的前n項和Sn滿足Sn=2an-2n+1. (1)求數(shù)列{an}的通項公式; (2)若不等式2n2-n-3<(5-λ)an對?n∈N*恒成立,求實數(shù)λ的取值范圍. [解] (1)當n=1時,Sn=2an-2n+1,即S1=a1=2a1-22,得a1=4. 當n≥2時,有Sn-1=2an-1-2n, 則an=2an-2an-1-2n,得an=2an-1+2n, 所以-=1,所以數(shù)列是以2為首項,1為公差的等差數(shù)列. 所以=n+1,即an=(n+1)·2n. (2)原不等式即(n+1)(2n-3)<(5

2、-λ)(n+1)2n,等價于5-λ>. 記bn=,則5-λ>bn對?n∈N*恒成立,所以5-λ>(bn)max. bn+1-bn=-=,當n=1,2時,5-2n>0,bn+1>bn,即b1<b2<b3; 當n>2,n∈N*時,5-2n<0,bn+1<bn,即b3>b4>b5>…;所以數(shù)列{bn}的最大項為b3=,所以5-λ>,解得λ<. (教師備選) 1.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若sin(A+C)=2sin Acos(A+B),且C=. (1)求證:a,b,2a成等比數(shù)列; (2)若△ABC的面積是2,求各邊的長. [解] (1)證明:∵A+B+C

3、=π,sin(A+C) =2sin Acos(A+B), ∴sin B=-2sin Acos C, 在△ABC中,由正弦定理得,b=-2acos C, ∵C=,∴b=a, 則b2=2a2=a·2a ∴a,b,2a成等比數(shù)列. (2) S=absin C=ab=2,則ab=4, 由(1)知,b=a,聯(lián)立兩式解得a=2,b=2, 由余弦定理得,c2=a2+b2-2abcos C=4+8-2×2×2×=20, ∴c=2. 2.在2018年3月鄭州第二次模擬考試中,某校共有100名文科學生參加考試,其中語文考試成績低于130的占95%,數(shù)學成績的頻率分布直方圖如圖 61

4、 圖61 (1)如果成績不低于130的為特別優(yōu)秀,這100名學生中本次考試語文、數(shù)學成績特別優(yōu)秀的大約各多少人? (2)如果語文和數(shù)學兩科都特別優(yōu)秀的共有3人. ①從(1)中的這些同學中隨機抽取2人,求這兩人兩科成績都特別優(yōu)秀的概率; ②根據(jù)以上數(shù)據(jù),完成2×2列聯(lián)表,并分析是否有99%的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀. 語文特別優(yōu)秀 語文不特別優(yōu)秀 合計 數(shù)學特別優(yōu)秀 數(shù)學不特別優(yōu)秀 合計 參考數(shù)據(jù):①K2=; ② P(K2≥k0) 0.50 0.40 … 0.010 0.005 0.001 k0

5、 0.455 0.708 … 6.635 7.879 10.828 [解] (1)共有100名文科學生參加考試,其中語文考試成績低于130的占95%,語文成績特別優(yōu)秀的概率為P1=1-0.95=0.05,語文特別優(yōu)秀的同學有100×0.05=5人,數(shù)學成績特別優(yōu)秀的概率為P2=0.002×20=0.04,數(shù)學特別優(yōu)秀的同學有100×0.04=4人. (2)①語文數(shù)學兩科都特別優(yōu)秀的有3人,單科特別優(yōu)秀的有3人, 記兩科都特別優(yōu)秀的3人分別為A1,A2,A3,單科特別優(yōu)秀的3人分別為B1,B2,B3,從中隨機抽取2人,共有:(A1,A2),(A1,A3),(A2,A3),(B1,

6、B2),(B1,B3),(B2,B3),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3)共15種,其中這兩人兩科成績都特別優(yōu)秀的有(A1,A2),(A1,A3),(A2,A3)這3種,則這兩人兩科成績都特別優(yōu)秀的概率為:P==. ②2×2列聯(lián)表: 語文特別優(yōu)秀 語文不特別優(yōu)秀 合計 數(shù)學特別優(yōu)秀 3 1 4 數(shù)學不特別優(yōu)秀 2 94 96 合計 5 95 100 ∴K2==≈42.982>6.635, ∴有99%的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀.

7、2.在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點為M,又PA=AB=4,AD=CD,點N是CD中點. 圖62 (1)求證:MN∥平面PAD; (2)求點M到平面PBC的距離. [解] (1)證明:在正三角形△ABC中,AB=BC,在△ACD中,AD=CD,又BD=BD, 所以△ABD≌△CBD,所以M為AC的中點, 又點N是CD中點,所以MN∥AD, 又AD?平面PAD,MN?平面PAD,所以MN∥平面PAD; (2)設M到平面PBC的距離為h,在Rt△PAB中,PA=AB=4,所以PB=4, 在Rt△PAC中,PA=AC=4,所以PC

8、=4, 在△PBC中,PB=4,PC=4,BC=4,所以S△PBC=4, 由VM-PBC=VP-BMC,即×4×h=×2×4,解得h=, 所以點M到平面PBC的距離為. 3.某高校在2018年自主招生考試成績中隨機抽取100名學生的筆試成績,按成績共分為五組,得到如下的頻率分布表: 組號 分組 頻數(shù) 頻率 第一組 [145,155) 5 0.05 第二組 [155,165) 35 0.35 第三組 [165,175) 30 a 第四組 [175,185) b c 第五組 [185,195) 10 0.1 (1)請寫出頻率分布表中a、b、

9、c的值,若同組中的每個數(shù)據(jù)用該組中間值代替,請估計全體考生的平均成績; (2)為了能選出最優(yōu)秀的學生,該高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名考生進入第二輪面試. ①求第3、4、5組中每組各抽取多少名考生進入第二輪面試; ②在(2)的前提下,學校要求每個學生需從A、B兩個問題中任選一題作為面試題目,求第三組和第五組中恰好有兩個學生選到問題B的概率. [解] (1)由題意知,a=0.3,b=20,c=0.2, =150×0.05+160×0.35+170×0.3+180×0.2+190×0.1=169.5. (2)①第3、4、5組共60名學生,現(xiàn)抽取6名,因此

10、第三組抽取的人數(shù)為×30=3人, 第四組抽取的人數(shù)為×20=2人,第五組抽取的人數(shù)為×10=1人. ②所有基本事件如下:(A,A,A,A),(B,A,A,A),(A,B,A,A),(A,A,B,A),(A,A,A,B),(B,B,A,A),(B,A,B,A),(B,A,A,B),(A,B,B,A),(A,B,A,B),(A,A,B,B),(B,B,B,A),(B,B,A,B),(B,A,B,B),(A,B,B,B),(B,B,B,B).基本事件總數(shù)有16個,其中第三組和第五組恰有兩個學生選到問題B的基本事件如下:(B,B,A,A),(B,A,B,A),(B,A,A,B),(A,B,B,A)

11、,(A,B,A,B),(A,A,B,B),共包含6個基本事件. 故第三組和第五組中恰好有兩個學生選到問題B的概率P==. 4.[選修4-4:坐標系與參數(shù)方程] 在平面直角坐標系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸建立極坐標系. (1)求曲線C的極坐標方程; (2) 在平面直角坐標系xOy中,A(-2,0),B(0,-2),M是曲線C上任意一點,求△ABM面積的最小值. [解] (1)由,得(x-3)2+(y-4)2=4, 將代入得ρ2-6ρcos θ-8ρsin θ+21=0,即為曲線C的極坐標方程. (2)設點M(3+2cos θ,4+2

12、sin θ)到直線AB:x+y+2=0的距離為d,則 d==, 當sin=-1時,d有最小值. 所以△ABM面積Smin=×|AB|×d=9-2. [選修4-5:不等式選講] 已知函數(shù)f(x)=|x+2|. (1)解不等式f(x)>4-|x+1|; (2) 已知a+b=2(a>0,b>0),求證-f(x)≤+. [解] (1)不等式f(x)>4-|x+1|,即|x+1|+|x+2|>4, 當x<-2時,不等式化為-(x+1)-(x+2)>4,解得x<-3.5; 當-2≤x≤-1時,不等式化為-(x+1)+(x+2)>4,無解; 當x≥-1時,不等式化為(x+1)+(x+2)>4,解得x>0.5; 綜上所述:不等式的解集為{x|x<-3.5或x>0.5}. (2)+=(a+b)=≥4.5, 當且僅當a=,b=時等號成立. 由題意知,-f(x)=-|x+2|≤=4.5, 所以-f(x)≤+.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!