2022年人教A版高中數(shù)學(xué) 高三一輪 三角函數(shù)與解三角形 3-1任意角、弧度制與任意角的三角函數(shù)《教案》

上傳人:xt****7 文檔編號(hào):105921151 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):12 大小:696KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年人教A版高中數(shù)學(xué) 高三一輪 三角函數(shù)與解三角形 3-1任意角、弧度制與任意角的三角函數(shù)《教案》_第1頁(yè)
第1頁(yè) / 共12頁(yè)
2022年人教A版高中數(shù)學(xué) 高三一輪 三角函數(shù)與解三角形 3-1任意角、弧度制與任意角的三角函數(shù)《教案》_第2頁(yè)
第2頁(yè) / 共12頁(yè)
2022年人教A版高中數(shù)學(xué) 高三一輪 三角函數(shù)與解三角形 3-1任意角、弧度制與任意角的三角函數(shù)《教案》_第3頁(yè)
第3頁(yè) / 共12頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年人教A版高中數(shù)學(xué) 高三一輪 三角函數(shù)與解三角形 3-1任意角、弧度制與任意角的三角函數(shù)《教案》》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年人教A版高中數(shù)學(xué) 高三一輪 三角函數(shù)與解三角形 3-1任意角、弧度制與任意角的三角函數(shù)《教案》(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年人教A版高中數(shù)學(xué) 高三一輪 三角函數(shù)與解三角形 3-1任意角、弧度制與任意角的三角函數(shù)《教案》 【教學(xué)目標(biāo)】 1.了解任意角的概念; 2.了解弧度制的概念,能進(jìn)行弧度與角度的互化; 3.理解任意角的三角函數(shù)(正弦、余弦、正切)的定義。 【重點(diǎn)難點(diǎn)】 1.教學(xué)重點(diǎn):任意角,弧度制和任意角三角函數(shù)的概念; 2.教學(xué)難點(diǎn):學(xué)會(huì)對(duì)知識(shí)進(jìn)行整理達(dá)到系統(tǒng)化,提高分析問(wèn)題和解決問(wèn)題的能力; 【教學(xué)策略與方法】 自主學(xué)習(xí)、小組討論法、師生互動(dòng)法 【教學(xué)過(guò)程】 教學(xué)流程 教師活動(dòng) 學(xué)生活動(dòng) 設(shè)計(jì)意圖 考綱再現(xiàn): 考試內(nèi)容 要

2、求層次 了解 理解 掌握 任意角的概念和弧度制 √ ? ? 弧度與角度的互化 √ 任意角的正弦、余弦、正切定義 √ 用單位圓中的三角函數(shù)線表示正弦、余弦和正切 √ [考綱傳真]1.了解任意角的概念 2.了解弧度制的概念,能進(jìn)行弧度與角度的互化 3.理解任意角的三角函數(shù)(正弦、余弦、正切)的定義 從近五年高考情況來(lái)看,本課時(shí)在高考中一般不直接考查, 常與三角恒等變形進(jìn)行綜合考查,但本講是學(xué)習(xí)后邊內(nèi)容的基礎(chǔ),是學(xué)好三角函數(shù)必須要掌握的基本內(nèi)容. 真題再現(xiàn) 1. 【xx福建高考】若 , 且 為第四象限角,則 的

3、值等于( ) 2.【xx課標(biāo)卷Ⅰ】如圖所示,圓O的半徑為1,A是圓上的定點(diǎn),P是圓上的動(dòng)點(diǎn).角x的始邊為射線OA,終邊為射線OP,過(guò)點(diǎn)P作直線OA的垂線,垂足為M,將點(diǎn)M到直線OP的距離表示成x的函數(shù)f(x),則y=f(x)在[0,π]的圖象大致為(  ) 解析:以O(shè)為坐標(biāo)原點(diǎn),射線OA為x軸的正方向,坐系.則P(cosx,sinx),M(cosx,0),故M到直O(jiān)P的距離為f(x)=|sinx·cosx|=|sin2x|,x∈[0,π],故選B. 。 學(xué)生通過(guò)對(duì)高考真題的解決,發(fā)現(xiàn)自己對(duì)知識(shí)的掌握情況。

4、 學(xué)生通過(guò)對(duì)高考真題的解決,感受高考題的考察視角。 通過(guò)對(duì)考綱的解讀和分析。讓學(xué)生明確考試要求,做到有的放矢 環(huán)節(jié)二: 知識(shí)梳理: 知識(shí)點(diǎn)1 角的有關(guān)概念 1.從運(yùn)動(dòng)的角度看,可分為正角、_____和______. 2.從終邊位置來(lái)看,可分為_(kāi)______和軸線角. 3.若α與β角的終邊相同,則β用α表示為β=α+2kπ(k∈Z). 知識(shí)點(diǎn)2 弧度的定義和公式 1.定義:長(zhǎng)度等于_______的弧所對(duì)的圓心角叫做1弧度的角,弧度記作rad. 2.換算關(guān)系

5、與相關(guān)公式 角α的弧度數(shù)公式 |α|=(弧長(zhǎng)用l表示) 角度與弧度的換算 1°=rad;1 rad=° 弧長(zhǎng)公式 弧長(zhǎng)l=|α|r 扇形面積公式 S=lr=|α|r2 知識(shí)點(diǎn)3 任意角的三角函數(shù) 1).任意角的三角函數(shù)定義: 任意角α的終邊與單位圓交于點(diǎn)P(x,y)時(shí),sin α= ,cos α= ,tan α= (x≠0). 2).三角函數(shù)線 如下圖,設(shè)角α的終邊與單位圓交于點(diǎn)P,過(guò)P作PM⊥x軸,垂足為M,過(guò)A(1,0)作單位圓的切線與α的終邊或終邊的反向延長(zhǎng)線相交于點(diǎn)T. 名師點(diǎn)睛: 1.必會(huì)結(jié)論(1)象限角與軸線角 ①象限

6、角: ②軸線角: (2)任意角三角函數(shù)的定義 設(shè)P(x,y)是角α終邊上異于頂點(diǎn)的任一點(diǎn),其到原點(diǎn)O的距離為r,則sin α=,cos α=,tan α=. 2.必清誤區(qū) (1)第一象限角、銳角、小于90°的角是三個(gè)不同的概念,前者是象限角,后兩者是區(qū)間角. (2)角度制與弧度制可利用180°=π rad進(jìn)行互化,在同一個(gè)式子中,采用的度量制度必須一致,不可混用. 考點(diǎn)分項(xiàng)突破 考點(diǎn)一: 角的概念及其集合表示 1.終邊在直線y=x上的角的集合是________. 【解析】 在(0,π)內(nèi)終邊在直線y=x上的角為, ∴終邊在直線y=x上的角的集合為 2.若角θ的

7、終邊與角的終邊相同,則在[0,2π]內(nèi)終邊與角的終邊相同的角的個(gè)數(shù)為_(kāi)_______. 【解析】 ∵θ=+2kπ(k∈Z),∴=+(k∈Z), 依題意0≤+≤2π,∴-≤k≤,∴k=0,1,2,即在[0,2π]內(nèi)與終邊相同的角為,,共三個(gè). 跟蹤訓(xùn)練1: 1.若角α的終邊和函數(shù)y=-|x|的圖象重合,試寫出角的集合; 2.若θ角的終邊與168°角的終邊相同,求在[0°,360°)內(nèi)終邊與角的終邊相同的角 解析:1.由于y=-|x|的圖象是三、四象限的角平分線, 故在0°~360°間所對(duì)應(yīng)的兩個(gè)角分別為225°及315°,從而角α的集合為 S={α|α=k?360°+225°或α=k

8、?360°+315°,k∈Z}. 解析2.:θ=k·360°+168°,k∈Z,=k·120°+56°,k∈Z.依題意得0≤k·120°+56°<360°,當(dāng)k=0,1,2時(shí), k·120°+56°在[0°,360°)內(nèi),所以=56°,176°,296°. 歸納:1.終邊在某直線上角的求法步驟 (1)數(shù)形結(jié)合,在平面直角坐標(biāo)系中畫出該直線. (2)按逆時(shí)針?lè)较驅(qū)懗鯷0,2π]內(nèi)的角. (3)再由終邊相同角的表示方法寫出滿足條件角的集合.(4)求并集化簡(jiǎn)集合. 2.確定kα,(k∈N*)的終邊位置的方法 先用終邊相同角的形式表示出角α的范圍,再寫出kα或的范圍,然后根據(jù)k的可能取

9、值討論確定kα或的終邊所在位置. 考點(diǎn)二: 扇形的弧長(zhǎng)、面積公式 (1)若圓弧長(zhǎng)度等于該圓內(nèi)接正方形的邊長(zhǎng),則其圓心角的弧度數(shù)是________. (2)已知扇形的圓心角是α,半徑是r,弧長(zhǎng)為l, ①若α=100°,r=2,求扇形的面積; ②若扇形的周長(zhǎng)為20,求扇形面積的最大值,并求此時(shí)扇形圓心 【解析】 (1)設(shè)圓半徑為r,則圓內(nèi)接正方形的對(duì)角線長(zhǎng)為2r,∴正方形邊長(zhǎng)為r,∴圓心角的弧度數(shù)是=.角的弧度數(shù). (2)①S=lr=αr2=×π×4=π, ②由題意知l+2r=20,即l=20-2r,S=l·r=(20-2r)·r=-(r-5)2+25,當(dāng)r=5時(shí),S的最大值

10、為25. 當(dāng)r=5時(shí),l=20-2×5=10,α==2(rad). 即扇形的面積最大值為25,此時(shí)扇形圓心角的弧度數(shù)為2 rad. 跟蹤訓(xùn)練2: 1. 已知一扇形的圓心角為α,半徑為R,弧長(zhǎng)為l. (1)若α=60°,R=10 cm,求扇形的弧長(zhǎng)l; (2)已知扇形的周長(zhǎng)為10 cm,面積是4 cm2,求扇形的圓心角: (3)若扇形周長(zhǎng)為20 cm,當(dāng)扇形的圓心角α為多少弧度時(shí),這個(gè) 扇形的面積最大? 解 由已知得,l+2R=20. 當(dāng)R=5時(shí),S取得最大值25,此時(shí)l=10,α=2. 2 已知2弧度的圓心角所對(duì)的弦長(zhǎng)為2,那么這個(gè)圓心角所對(duì)弧長(zhǎng)是(  )

11、 A.2    B.sin2    C.    D.2sin1 解析:如圖,∠AOB=2弧度,過(guò)O點(diǎn)作OC⊥AB于C,并延長(zhǎng)OC交于D.∠AOD=∠BOD=1弧度,且 AC=AB=1,在Rt△AOC中,AO==, 從而弧AB的長(zhǎng)為l=|α|·R=.故選C. 歸納:弧度制下有關(guān)弧長(zhǎng)、扇形面積問(wèn)題的解題策略 1.明確弧度制下弧長(zhǎng)公式l=αr,扇形的面積公式是S=lr=αr2(其中l(wèi)是扇形的弧長(zhǎng),α是扇形的圓心角). 2.求扇形面積的關(guān)鍵是求得扇形的圓心角、半徑、弧長(zhǎng)三個(gè)量中的任意兩個(gè)量. 考點(diǎn)三:三角函數(shù)的定義 ●命題角度1 利用三角函數(shù)的定義求三角函數(shù)值 1.已知角α

12、的終邊經(jīng)過(guò)點(diǎn)(-4,3),則cos α=(  ) A.    B.   C.-   D.- 【解析】 因?yàn)榻铅恋慕K邊經(jīng)過(guò)點(diǎn)(-4,3),所以x=-4,y=3,r=5,所以cos α==-. 2.若角θ的終邊經(jīng)過(guò)點(diǎn)P(-,m)(m≠0)且sin θ=m,則cos θ的值為_(kāi)_______. 【解析】 由題意知r=,∴sin θ==m,∵m≠0,∴m=±,∴r==2, ∴cos θ==. ●命題角度2 利用三角函數(shù)的定義求點(diǎn)的坐標(biāo) 3.點(diǎn)P從(0,1)出發(fā),沿單位圓逆時(shí)針?lè)较蜻\(yùn)動(dòng)弧長(zhǎng)到達(dá)Q點(diǎn),則Q點(diǎn)的坐標(biāo)為_(kāi)_______. 【解析】 由三角函數(shù)定義可知Q點(diǎn)的坐標(biāo)(x,y)

13、滿足x=cos π=-,y=sin π=-,∴Q. 4.已知角α的始邊與x軸的正半軸重合,頂點(diǎn)在坐標(biāo)原點(diǎn),角α終邊上的一點(diǎn)P到原點(diǎn)的距離為,若α=,則點(diǎn)P的坐標(biāo)為_(kāi)_______. 【解析】 設(shè)P點(diǎn)坐標(biāo)為(x,y),由題意知x=cos,y=sin,∴P點(diǎn)坐標(biāo)為(1,1). ●命題角度3 利用三角函數(shù)線解三角不等式 5.在單位圓中畫出適合下列條件的角α的終邊的范圍, 并由此寫出角α的集合:sinα≥ 解析:作直線y=交單位圓于A、B兩點(diǎn),連結(jié)OA、OB,則OA與OB圍成的區(qū)域即為角α的終邊的范圍,故滿足條件的角α的集合為{α|2kπ+≤α≤2kπ+π,k∈Z}. 跟蹤訓(xùn)練3: 1

14、. 設(shè)90°<α<180°,角α的終邊上一點(diǎn)為P(x,), 且cosα=x,求sinα與tanα的值; 解析:∵r=,∴cosα=, 從而x=,解得x=0或x=±. ∵90°<α<180°,∴x<0,因此x=-. 故r=2,sinα==,tanα==-. 2.如圖所示,在平面直角坐標(biāo)系xOy中,角α的終邊與單位圓交于點(diǎn)A,點(diǎn)A的縱坐標(biāo)為,則cosα=______. 解析:由題意可得,點(diǎn)A的橫坐標(biāo)為 -,由三角函數(shù)的定義得cosα=-. 3. 如果點(diǎn)P(sinθcosθ,2cosθ)位于第三象限,那么角θ所在的象限是(  ) A. 第一象限   B.第二象限C.第三象限

15、 D.第四象限 解析:3. 因?yàn)辄c(diǎn)P(sinθcosθ,2cosθ)位于第三象限, 所以sinθcosθ<0,2cosθ<0,即所以θ為第二象限角,選B. 4.在單位圓中畫出適合下列條件的角α的終邊的范圍, 并由此寫出角α的 解:作直線x=-交單位圓于C、D兩點(diǎn),連結(jié)OC,OD,則OC與OD圍成的區(qū)域(圖中陰影部分)即為角α終邊的范圍.故滿足條件的角α的集合{α|2kπ+π≤α≤2kπ+π,k∈Z}. 集合:cosα≤-. 歸納:三角函數(shù)定義的應(yīng)用方法 1.已知角α終邊上一點(diǎn)P的坐標(biāo),可求角α的三角函數(shù)值.先求P到原點(diǎn)的距離,再用三角函數(shù)的定義求解. 2.已知角α的某三角函數(shù)

16、值,可求角α終邊上一點(diǎn)P的坐標(biāo)中的參數(shù)值,可根據(jù)定義中的兩個(gè)量列方程求參數(shù)值. 3.已知角α的終邊所在的直線方程或角α的大小,根據(jù)三角函數(shù)的定義可求角α終邊上某特定點(diǎn)的坐標(biāo). 4. 單位圓及三角函數(shù)線,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想方法. 引導(dǎo)學(xué)生通過(guò)對(duì)基礎(chǔ)知識(shí)的逐點(diǎn)掃描,來(lái)澄清概念,加強(qiáng)理解。從而為后面的練習(xí)奠定基礎(chǔ). 在解題中注意引導(dǎo)學(xué)生自主分析和解決問(wèn)題,教師及時(shí)點(diǎn)撥從而提高學(xué)生的解題能力和興趣。

17、 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 通過(guò)跟蹤訓(xùn)練,來(lái)鍛煉學(xué)生獨(dú)立解決問(wèn)題的能力,到底知識(shí)和能力的內(nèi)化。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)

18、知結(jié)構(gòu)。 通過(guò)跟蹤訓(xùn)練,來(lái)鍛煉學(xué)生獨(dú)立解決問(wèn)題的能力,到底知識(shí)和能力的內(nèi)化。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 由常見(jiàn)問(wèn)題的解決和總結(jié),使學(xué)生形成解題模塊,提高模式識(shí)別能力和解題效率。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的

19、認(rèn)知結(jié)構(gòu)。 引導(dǎo)學(xué)生對(duì)所學(xué)的知識(shí)進(jìn)行小結(jié),由利于學(xué)生對(duì)已有的知識(shí)結(jié)構(gòu)進(jìn)行編碼處理,加強(qiáng)理解記憶,提高解題技能。 環(huán)節(jié)三: 課堂小結(jié): 1.認(rèn)真分析題意,合理選擇數(shù)學(xué)模型是解決應(yīng)用問(wèn)題的基礎(chǔ); 2.實(shí)際問(wèn)題中往往解決一些最值問(wèn)題,我們可以利用二次函數(shù)的最值、函數(shù)的單調(diào)性、基本不等式、導(dǎo)數(shù)等求得最值. 3.函數(shù)模型應(yīng)用不當(dāng)是常見(jiàn)的解題錯(cuò)誤.所以,正確理解題意,選擇適當(dāng)?shù)暮瘮?shù)模型是正確解決這類問(wèn)題的前提和基礎(chǔ). 4.要特別關(guān)注實(shí)際問(wèn)題的自變量的取值范圍,合理確定函數(shù)的定義域. 5.注意問(wèn)題反饋.在解決函數(shù)模型后,必須驗(yàn)證這個(gè)數(shù)學(xué)結(jié)果對(duì)實(shí)際問(wèn)題的合理性. 學(xué)生回顧,總結(jié). 引導(dǎo)學(xué)生對(duì)學(xué)習(xí)過(guò)程進(jìn)行反思,為在今后的學(xué)習(xí)中,進(jìn)行有效調(diào)控打下良好的基礎(chǔ)。 環(huán)節(jié)四: 課后作業(yè):學(xué)生版練與測(cè) 學(xué)生通過(guò)作業(yè)進(jìn)行課外反思,通過(guò)思考發(fā)散鞏固所學(xué)的知識(shí)。

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!