2022年高二數(shù)學(xué) 《平面向量的分解定理》教案(2) 滬教版

上傳人:xt****7 文檔編號:105754230 上傳時間:2022-06-12 格式:DOC 頁數(shù):4 大?。?2.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高二數(shù)學(xué) 《平面向量的分解定理》教案(2) 滬教版_第1頁
第1頁 / 共4頁
2022年高二數(shù)學(xué) 《平面向量的分解定理》教案(2) 滬教版_第2頁
第2頁 / 共4頁
2022年高二數(shù)學(xué) 《平面向量的分解定理》教案(2) 滬教版_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高二數(shù)學(xué) 《平面向量的分解定理》教案(2) 滬教版》由會員分享,可在線閱讀,更多相關(guān)《2022年高二數(shù)學(xué) 《平面向量的分解定理》教案(2) 滬教版(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高二數(shù)學(xué) 《平面向量的分解定理》教案(2) 滬教版 一、教學(xué)內(nèi)容分析 本節(jié)課內(nèi)容是對前面向量知識的綜合運用,在本章知識結(jié)構(gòu)中起著承上啟下的作用,是平面向量線性運算向坐標(biāo)運算過渡的橋梁,是運用向量知識解決問題的理論基礎(chǔ). 二、教學(xué)目標(biāo) 1.理解和掌握平面向量的分解定理; 2.掌握平面內(nèi)任一向量都可以用兩個不平行向量來表示; 3.掌握基的概念,并能夠用基表示平面內(nèi)的向量; 4.經(jīng)歷平面向量分解定理的探求過程,培養(yǎng)觀察能力、抽象概括能力、交流合作能力. 三、教學(xué)重點及難點 平面向量分解定理的發(fā)現(xiàn)和形成過程. 四、教學(xué)用具準(zhǔn)備 電腦,幻燈機,實驗用的圖片等等

2、. 設(shè)置情景,引入課堂 探索探究,主動建構(gòu) 例題分析 課堂小結(jié) 布置作業(yè) 1.觀察實例 2.思考問題 3.概括討論,提出新問題 1.數(shù)學(xué)實驗1 2.數(shù)學(xué)實驗2 3.探究結(jié)果 4.證明唯一性 5.歸納概括,得出結(jié)論 五、教學(xué)流程設(shè)計 六、教學(xué)過程設(shè)計 (一)、 設(shè)置情景,引入課題 1.觀察 前面我們學(xué)過向量的加法,知道兩個向量可以合成一個向量,反過來,一個向量是否可以分解成兩個向量呢? 下面讓我們來看一個實例: 實例:一盞電燈,可以由電線CO吊在天花板上,也可以由電線OA和繩BO拉住.CO所受的力F與電燈重力平衡,拉力F可以

3、分解為AO與BO所受的拉力F1和 F2 . 2.思考:從這個實例我們看到了什么? 答:一個向量可以分成兩個不同方向的向量. 3. 概括討論,提出新問題: 如果是平面內(nèi)的兩個不平行的向量,是該平面內(nèi)的任意一個非零向量,那么與之間有什么關(guān)系呢? (二)、探索探究,主動建構(gòu) 1、 數(shù)學(xué)實驗1 實驗設(shè)計: (1)實驗?zāi)康模和ㄟ^實驗讓學(xué)生探究:給定平面內(nèi)的兩個不平行向量,對于給定的非零向量是否能分解成方向上的兩個向量,且分解是否是唯一的? (2)實驗步驟: a.以四位同學(xué)為一組,給每一位同學(xué)一個圖,上面有兩個不平行向量和; b.每個同學(xué)先獨立作圖; c

4、.小組對照,比較所分解的兩向量的長度和方向是否相同.并得出結(jié)論. (3)實驗報告:(由小組長發(fā)言)可以分解,且分解的長度和方向唯一的. 師:既然可以分解并且是唯一的,能不能用數(shù)學(xué)式子把和的關(guān)系表示出來? 生:是不平行向量,是平面內(nèi)給定的向量 (1) 作,作, (2) 作, (3) 作平行四邊形,則. 對于給定的向量可以唯一分解成給定的兩個不平行向量,那么對于任意的向量是否也可以得到同樣的結(jié)論呢?下面讓我們來做一個實驗. 2、數(shù)學(xué)實驗2? 實驗設(shè)計:? (1)實驗?zāi)康模和ㄟ^幾何畫板向量分解動畫,讓學(xué)生體會對于任意向量都可以分解成給定的兩個不平行向量,且分解是唯一的.? (2

5、)實驗步驟: ? a.利用幾何畫板畫出兩個不平行向量,畫出一個任意向量(該向量可以任意拖動終點來改變);? b.學(xué)生自己拖動從中體會其向量的任意性.? (3)實驗報告:(讓學(xué)生來概括整實驗的過程.)? 3、探究結(jié)果(實驗報告)? 平面內(nèi)的任一非零向量都可以表示為給定的兩個不平行向量的線性組合,即,且分解是唯一的. 4、證明唯一性: 證明:(1)當(dāng)時, (2)當(dāng)時,假設(shè),則有 .由于不平行,故,即. 5、概括得出定理: 平面向量分解定理:如果是平面內(nèi)的兩個不平行向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù),使,我們把不平行的向量叫做這一平面內(nèi)所有向量的一組基.

6、 (三).例題分析例1:自定義兩個不共線向量,求作向量 .(圖見課件ppt) 解:1.取點,作; 2.作平行四邊形OACB,即為所求 例2.如圖:平行四邊形ABCD的兩條對角線相交于點M,且 ,分別用表示和.(圖見課件ppt) 解: 在平行四邊形ABCD中, , 思考題: 例 3.如圖,已知是不平行的兩個向量,是實數(shù),且,用表示.(圖見課件ppt) 解: (四)、課堂小結(jié) (五)、作業(yè)布置 1、組織學(xué)生完成教材后面練習(xí),由學(xué)生自評或互評。? 2.《練習(xí)》 七、教學(xué)設(shè)計說明 本課主要是平面向量的分解定理及簡單的應(yīng)用.? 在課堂設(shè)計上做一種新的嘗試,把數(shù)學(xué)實驗帶入課堂,讓學(xué)生通過實驗探究定理的內(nèi)容.課堂組織形式比較新穎,引起學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的求知欲,學(xué)生們積極的參與了整堂課的學(xué)習(xí)過程.? 通過實驗的制作,培養(yǎng)了學(xué)生的動手作圖能力,通過學(xué)生對實驗結(jié)果的討論,培養(yǎng)學(xué)生的抽象概括能力,語言表達能力.? 學(xué)生在原有知識的基礎(chǔ)上,自主建構(gòu)自己新的知識結(jié)構(gòu),充分體現(xiàn)了學(xué)生為主體,教學(xué)為主導(dǎo)的建構(gòu)主義教學(xué)觀.學(xué)生的學(xué)習(xí)效果很好,基本上掌握分解定理的實質(zhì)內(nèi)容,并能把定理的思想應(yīng)用到具體的問題當(dāng)中

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!